
) CHAPTER NE

The Kernel and its Extensions

“Mathematical formulation allows us to remain much further from the
computer than would otherwise be the case, and in this context any programming
language is already too near.”

Griffiths 1975

Introduction

The programming language we will use will include a new type of primitive statement
called an atomic description which was first described in [Back 80]. It is essentially a general
nondeterministic assignmet statement which affects the scope as well as the value of variables in the
state. This is because it can add and remove variables to and from the state as well as change the
values assigned to them. If x and y are lists of distinct variables which have no variables in common
and Q is a formula of first order logic then the effect of the atomic description:

x/y.Q
is to add the variables in the list x to the state (those that are not already in the state), assign values to
them in such a way that the formula Q becomes true, remove the variables in y from the state and
terminate. If there is more than one possible assignment to the variables in x such that Q becomes
true then one is chosen nondeterministically. If there is no such assignment then the statement does
not terminate.

Using this statement any specification of a program can be expressed as a single statement
in our language and the Atomic Description will thus be the only primitive statement we require. It has
the added advantage of having a very straightforward mathematical semantics. This means that our
programming language can also be used as our specification language so that the proof of the
implementation of a specification is simply a special case of the proof of a refinement. This will
enable us to transform specifications into programs and also take a given program and attempt to
derive its specification (or at least the specifications of parts of the program). We give an example of
using this process as an aid to program comprehension and program maintenance in Chapter Nine.

This statement is similar to the “specification statement” used by C.Morgan and others
[Morgan 88] which is written:

v:[Pre/Post]
where v is a list of variables and Pre and Post are formulae, Pre is called the precondition, and
Post is called the postcondition. If the precondition is not satisfied initially then the statement does
not terminate. For any initial state which satisfies the precondition the statement must terminate in a
state which satisfies the postcondition and in doing so it may only change the values of the variables in

1

the list v. References to variables x0 etc. where x is in v refer to the initial values of these variables.
So to express this specification statement in terms of the atomic description we might write:

v0/〈〉.
(

Pre ∧ v=v0

)

; v/v0.Post
However, this program will not terminate if there is no assignment of values to the variables in v
which causes Post to be satisfied, but the specification statement must terminate whenever Pre is
satisfied initially. Thus a statement such as [true/false] (which terminates on any initial state,
changes the values of no variables, but terminates in a state for which false is true) is allowed–such
statements are called “Miracles” for obvious reasons. This requirement precludes the interpretation
of specification statements as state transformations in the way we have done since no final state can
satisfy false. Adding Miracles to the programming language is a bit like adding 0/0 to arithmetic,
one can “prove” that x=0/0 for any number x and similarly one can prove that a Miracle implements
any specification. Such statements were specifically excluded by Dijkstra in [Dijkstra 76] by his “Law
of the excluded miracle” which defines wp(S,false) to be false for any statement S.

Examples of Atomic Descriptions

〈A〉/〈B〉.
(

A= ℘(B)∪ω1∪C
)

sets A to ℘(B)∪ω1∪C and then removes B from the state space.

〈y〉/〈〉.
(

y=
∑

n<ωn−2sin(nx2) ∧ x>0
)

sets y to the value of the expression iff x>0 initially.

〈y〉/〈〉.
(

y−ε < Lim n<ω

(
∑

16i6n1/i − logen
)

< y+ε
)

sets y to within ε of Euler’s constant–provided ε >0. If ε 60 initially then this will not terminate.

These examples illustrate that the value assigned to a variable could be anything: including
an infinite set or a real number–we are not limited to integer values. This illustrates a comment
made by Landin in [Landin 66]: “this discussion . . . reveals the possibility that primitives might be
sensationally non-algorithmic.”

Proof Rules

Our transformations are proved by showing that the weakest preconditions corresponding
to two statements are equivalent (or that one implies the other in the case of a refinement) as
formulae of infinitary first order logic. From the theorem below we can then deduce that the two
programs are equivalent in the sense of having the same denotational semantics. First a few
definitions:

Defn: A model for programs is an interpretation of the constants, function symbols and relation
symbols of the logical formulae used in the programs as elements, functions and relations on a given
set of values. With such a model one can calculate give a truth value to a formula given the values of

2

its free variables. A model provides an interpretation of programs as state transformations. If the
state transformation defined by program S under model M is a refinement of the state
transformation defined by S′ then we write S6MS′. Sentences are formulae with no free variables,
so all sentences are either true or false with respect to a model. If ∆ is a set of sentences (ie formulae
with no free variables) then we say that a model satisfies ∆ if all the sentences in ∆ are true in the
model. If for each such model M we have S6MS′ then we write ∆ |=S6S′.

Defn: Suppose S and S′ are programs which have the same initial set of variables and both assign
values to the variables w1,...,wn. Suppose we have a set ∆ of sentences of infinitary first order logic
(these define the properties we require of the function and relation symbols in the logic). Suppose we
extend the logical language by adding a new n-ary relation symbol G.
Then if we can prove

(

WP(S,G(w1,...,wn))⇒WP(S′,G(w1,...,wn))
)

by using the sentences in ∆ as
extra axioms we write ∆ ⊢S6S′.

The following theorem is crucial, and explains the similarity in notation of the last two definitions:

Theorem: (i) For any set ∆ of sentences: ∆ ⊢S6S′ implies ∆ |=S6S′.
(ii) For any countable set ∆ of sentences: ∆ |=S6S′ implies ∆ ⊢S6S′.

Proof: For the detailed proof of this theorem see [Ward 89a].

Cor: Proof Rule for Equivalence:
If ∆ |=S6S′ and ∆ |=S′ 6S then we write ∆ |=S ≈ S′. Similarly if ∆ ⊢S6S′ and ∆ ⊢S′ 6S then we
write ∆ ⊢S ≈ S′. We have: (i) For any set ∆ of sentences: ∆ ⊢S ≈ S′ implies ∆ |=S ≈ S′. (ii) For any
countable set ∆ of sentences: ∆ |=S ≈ S′ implies ∆ ⊢S ≈ S′.

This gives us our technique for proving refinement between statements. It is complete
since if ∆ |=S6S′ then there is a proof of S6S′ from ∆ (although the proof may be infinitely long
-but only countably infinite!). It is sound since if we prove S6S′ from ∆ then ∆ |=S6S′. (See
[Karp 64], [Back 80] and [Ward 89b] for the detailed justification of these claims). Completeness
means that all refinements are provable, soundness means that all proofs of refinements are reliable.

It is easy to see that G(w) above can be replaced by any formula Q. Thus:
(i) If S6MS′ then WP(S,Q)⇒WP(S′,Q) holds in M.
(ii) If ∆ |=S6S′ then ∆ |=WP(S,Q)⇒WP(S′,Q).
(iii) If ∆ is countable and ∆ ⊢S6S′ then ∆ ⊢WP(S,Q)⇒WP(S′,Q).

3

The initial set of variables on which a program works is called its “initial state space”, and
similarly the final state space is the set of variables which are active after the program terminates. For
a program to be legal it must be possible to determine the initial state space uniquely given the final
state space. We write S:V → W for a program S which can legally have V as the initial state space
and W as the final state space (where V and W are finite, non-empty sets of variables).

Lemma: Induction Rule for Recursion:
If ∆ is a countable set of sentences, and S:V → V and S′:V → V are programs with the same initial
and final state spaces, and B a formula with var(B)⊆V then:
(i) If ∆ ⊢ proc X ≡ S.n 6 S′ for every n< ω then ∆ ⊢ proc X ≡ S. 6 S′

(ii) ∆ ⊢ proc X ≡ S.n 6 proc X ≡ S. for every n< ω.
Proof: See [Ward 89b].

This theorem shows how truncations are used to prove refinements and transformations
on recursive programs. We can use it to prove properties of infinitely long formulae by induction on
their structure.

Properties of WP:

Let S:V → W be any statement. If var(Qξ)⊆W for all ξ < ω1 where Qξ formulae of L,
then we can prove the following generalisations of the five properties of the weakest precondition
given by Dijkstra in [Dijkstra 76]:
(i) WP(S,false) ⇐⇒ false
(ii) ∀x.

((

Q0 ⇒Q1

)

⇒
(

WP(S,Q0)⇒WP(S,Q1)
))

provided every variable in W−x̃ is constant in S.
(iii) WP(S,

∧

ξ<δQξ) ⇐⇒
∧

ξ<δWP(S,Qξ) for δ < ω1

(iv)
∨

ξ<δWP(S,Qξ)⇒WP(S,
∨

ξ<δQξ) κκκκκ for δ < ω1

(v) If Qi ⇒Qi+1 for each i< ω, then WP(S,
∨

i<ωQi)⇒
∨

i<ωWP(S,Qi)
A variable is constant in S if it does not appear in the list of assigned variables in any atomic
description in S.

Property (v) (continuity) in general only holds for statements with bounded
nondeterminacy. A sufficient condition for bounded nondeterminacy is that each atomic description
is finite:

Defn: The atomic description x/y.Q is finite in the structure M if M|=finite(x,Q) where
finite(x,Q) is

∨

n<ω ∀x0x1...xn

(
∧

i6nQ[xi/x] ⇒
∨

i<j6nxi =xj

)

ie there is only a finite number of distinct xi’s such that Q[xi/x] holds, ie there is only a finite number

4

of values for x for which Q can be interpreted as true.
We say x/y.Q is finite in ∆ if ∆ |=finite(x,Q), so (v) holds if each atomic description in S

is finite in ∆.

Theorem: Replacement in statements:
Let S:V → W contain the substatement T:V′ → W′. Let S′:V → W be the result of replacing T in S by
T′ whereT′:V′ → W′ . Then for any countable set of sentences ∆ we have

∆ ⊢ T6T′ ⇒ ∆ ⊢S6S′

Proof: By induction on the structure of S. The induction is a double induction over (i) The maximum
depth of recursion nesting, and (ii) the length of the statement.
To prove the case for recursion we note:
∆ ⊢ proc X ≡ Sn. 6 proc X ≡ S′.n for n< ω

since proc X ≡ S.n has a lower depth of recursion nesting than proc X ≡ S.
By the induction rule for recursion we get:
∆ ⊢ proc X ≡ S′.n 6 proc X ≡ S′. for n< ω. Hence
∆ ⊢ proc X ≡ S.n 6 proc X ≡ S′. for n< ω, by transitivity of refinement. Hence
∆ ⊢ proc X ≡ S. 6 proc X ≡ S′. by induction rule again.
The other cases are simple applications of the induction hypothesis.

This theorem shows that we can replace any substatement of a statement with a
refinement of it and get a refinement of the whole statement.

DEFINITIONAL TRANSFORMATIONS

The next stage is to extend the kernel language by means of definitional transformations–
for example we define Dijkstra’s guarded commands by expressing them in terms of deterministic
and nondeterministic selection. We can then prove that two statements in the extended language are
equivalent by proving that their kernel representations are equivalent. However a simpler method is to
use the kernel representation to derive the weakest precondition of the new statement types; we can
then prove equivalence of statements by going directly to the weakest preconditions. In some cases
this can result in a great saving of labour. For example the kernel representations of Dijkstra’s
guarded command is rather complicated while the weakest precondition reduces to a simple
extension of the weakest precondition of the if statement. The rest of this Chapter will investigate
some important properties of while loops (which are defined as tail-recursive procedures). We
develop induction rules which assist in proving the equivalence of statements involving while loops
and recursion by considering their “truncations”. We prove some generalisations of Dijkstra’s

5

theorems for proving termination of while loops and extend them to recursive statements. Finally we
prove our “Theorem on recursive implementation of specifications” which provides the link between
a recursively-defined specification statement and a recursive procedure which implements it. This
theorem will prove extremely useful in later chapters, especially in the sections on the derivation of
algorithms from their specification.

Assignments and Assertions

We cannot express the assignment x:=x+y by the statement 〈x〉/〈〉.
(

x=x+y
)

since
this attempts to assign a value to x such that x=x+y. This is equivalent to abort if y6=0 and assigns
an arbitrary value to x if y=0. To get the right effect we need the sequence of two primitive
statements: 〈z〉/〈〉.

(

z=x+y
)

; 〈x〉/〈z〉.
(

x=z
)

where z is a new variable. With this
interpretation the assignment x:=x/y will not terminate if y=0 and x6=0 initially as there is then no
value for z such that z.y=x –in our model an error is indicated by non-termination. If y=x=0
initially then x:=x/y will assign an arbitrary value to x.

An assertion {R} is expressed by the statement 〈〉/〈〉.R, which cannot change the value of
any variable. It acts as a partial skip statement -if the initial state satisfies R then it has no effect,
otherwise it acts as an abort (ie does not terminate). Note the different role our assertions play to
that in Hoare’s axiomatic method of program proving. In our formulation, assertions are statements
rather then annotations of a program. A proof of a program using his methods corresponds to a
proof that a program is refined by the same program with certain assertions added. For example
proving {R1} P {R2} by Hoare’s method corresponds to proving the refinement {R1};P 6

{R1};P;{R2}. Our method is more general than his in the sense that we can prove total correctness: if
we prove that S1 6S2 then S1 terminates whenever S2 does.

Suppose statement S contains statement T within it, ie we have S=...T... and suppose we
want to replace T by T′. If T6T′ then there is no problem; the replacement theorem shows that we
will get a refinement of S. If not then we can try to find an assertion {R} such that S6S′ where
S′ =...{R};T... then if we can prove {R};T6T′ then S′ 6S′′ where S′′ =...T′... and then by transitivity
we
get S6S′′. This illustrates how assertions can supply information about the conditions under which a
statement operates and thus the conditions under which a refinement of the statement is required to
work; which may ease the task of proving the refinement. This is one way in which assertion
transformations “migrate” useful information through the program.

Weak and Strong Termination

One problem with the particular interpretation of statements as state transformations we

6

are using is that it does not deal with termination in quite the way one intuitively expects. To see this
we consider an example taken from [Dijkstra 76]: Let S be the statement:
proc X ≡ if x6=0 then if x>0 then x:=x−1

else x:=x.
(

x>0
)

fi;
X

else skip fi.
This is a simple tail-recursion which must terminate for any initial value of x –positive, negative or
zero. However for negative values the interpretation of this statement as a state transformation has
⊥ in its set of final states. This is interpreted as meaning that the statement is not guaranteed to
terminate.

The interpretation function actually formalises strong termination of recursive procedures
instead of the usual notion of termination. A procedure is strongly terminating iff for each initial state
s there is an integer ns such that the procedure is guaranteed to terminate in less than ns steps. We
shall call a procedure that is not strongly terminating weakly terminating.

Termination is always strong when the nondeterminism of the program is bounded: this is
a consequence of Konig’s Lemma. If a program has bounded nondeterminism then the set of all
possible execution paths of a program from some initial state will form a finitely branching tree and if
the program is guaranteed to terminate for the given initial state then each branch will be finite. By
Konig’s Lemma this means that the tree itself is finite and therefore has a finite number of execution
paths and thus a limit to the length of its execution paths which is a limit to the number of iterations
before termination. Thus termination is strong.

However with an infinitely branching tree Konig’s Lemma no longer applies and it is
possible for each branch of the tree to be finite but the whole tree to be infinite, for example the
execution tree of the program S on initial state x= −1 is:

7

-the fact that there could still be unfinished computation after any number of recursive calls does not
mean that there must be a nonterminating recursive call.

We cannot solve this by simply changing the approximation ordering since the following
program has the same set of approximations {s0,⊥} for x= −1 initially but will not be guaranteed
to terminate:

proc X ≡ if x6=0 then x:=x′.
(

x′ =0 ∨ x′ =1
)

; X
else skip fi.

In other words, if we want to be able to deduce the behaviour of a program from the
behaviour of all its truncations we shall have to be content with formalising strong termination. We
would like to be able to use induction to prove properties of all the truncations and then deduce that
the property holds for the general program.

A different solution to the problem is outlined in [Back 80a] where an operational
semantics is defined in which the state transformations map states to sets of execution paths. The
execution paths are finite or infinite sequences of states. There are three kinds of execution paths:
(i) Terminal paths, which are of the form 〈s1,. . . ,sn〉, n>1, si proper states.
(ii) Unfinished paths, which are of the form 〈s1,. . . ,sn,⊥〉, n>1, si proper states.
(iii) Infinite paths, which are of the form 〈s1,s2. . . 〉, si proper states.

The approximation ordering on execution paths is:
σ ⊑ σ′ iff either σ is terminal or infinite and σ = σ′

or σ is unfinished and σ̄ 6 σ′

where σ̄ is σ with the possibly trailing element ⊥ removed and σ 6 σ′ means σ is an initial
segment of σ′.

However, this solution makes the semantics much more complex than the “black box”
approach of our denotational semantics which only models the input-output behaviour of a
statement rather than the internal details of the computation. Instead we will avoid unbounded
nondeterminism by restricting all assignments to choose from a finite set of possibilities with the
exception of those which change from an abstract to a concrete state space.

EXTENDING THE LANGUAGE

We will now present the first set of extensions to our kernel language. In the following,
S1,. . . ,Sn are statements from V to W, x is a list of distinct variables in V and Q and B1,. . . ,Bn are
formulae of L with var(Q)⊆V∪x′. and var(Bi)⊆V for i=1,. . . ,n. The symbol “=DF ” (read “is

8

defined as”) introduces an extension to the language by means of a definitional transformation. The
first four extensions are taken from [Back 80], we have built on this by adding recursive functions and
unbounded loops which can be terminated from the middle.

Assertions: The assertion {Q} =DF 〈〉/〈〉.Q.
skip =DF {true} and abort =DF {false}

We have: WP({Q},R)κκκκκκκκκκκ = Q∧R, WP(skip,R)κκκκκκ = R and WP(abort,R) = false.

Assignment: Suppose Q be a formula of L with var(Q)⊆V∪x′ (where x′ is the list of primed
variables corresponding to x) with ∆ ⊢finite(x′,Q). Then the (finite nondeterministic) assignment:

x:=x′.Q =DF x′/〈〉.Q; x/x′.
(

x=x′
)

is a statement which assigns new values to the variables in x in such a way that the condition Q holds.
The requirement ∆ ⊢finite(x′,Q) ensures that there is only a finite number of ways of making the
assignment. The simple assignment is defined:

κκκκx:=t =DF x:=x′.
(

x′ =t
)

where t is a list of terms of L with ℓ(x)= ℓ(t) and var(ti)⊆V for i=1...ℓ(t).
We have:
WP(x:=x′.Q,R) = ∃x′.Q ∧ ∀x′.

(

Q⇒R[x′/x]
)

WP(x:=t,R) = R[t/x]

Nondeterministic Selection:

if B1 → S1 ⊓⊔ . . . ⊓⊔ Bn → Sn fi is defined as:
if fi =DF abort
if B1 → S1 fi =DF if B1 then S1 else abort fi
if B1 → S1 ⊓⊔ B2 → S2 fi

=DF if B1 ∧ ¬B2 then S1 else if B2 ∧ ¬B1 then S2

else if B1 ∧B2 → oneof S1 ⊓⊔ S2 foeno fi fi fi
if B1 → S1 ⊓⊔ . . . ⊓⊔ Bn → Sn fi =DF if B1 → S1

⊓⊔ B2 ∨ . . . ∨Bn → if B2 → S2 ⊓⊔ . . . ⊓⊔ Bn → Sn fi fi for n>2
For the weakest precondition we calculate that:

WP(if B1 → S1 ⊓⊔ . . . ⊓⊔ Bn → Sn fi ,R) =
∨

16i6nBi ∧
∧

16i6n

(

Bi ⇒WP(Si,R)
)

We abbreviate if B then S else skip fi by if B then S fi. Note that this differs from
if B → S fi since the latter does not terminate when ¬B holds while the former is equivalent to skip.

9

Blocks: Let S be a statement in V∪x, with x∩V= ∅. Then the block
begin x: S end =DF x/〈〉.true; S; 〈〉/x.true

is a statement in V. The weakest precondition is
WP(begin x:S end ,R)= ∀x.WP(S,R)

The block allows the introduction of temporary variables, these are not true local variables
since we do not allow the same name to be used more than once. True local variables will be
introduced later. We require all local variables of a block to be properly initialised before their values
are referred to, but we will not give any specific scheme (such as that given in [Dijkstra 76]) to
guarantee this. Neglecting proper initialisation allows unbounded nondeterminism to creep in. For
example the block begin y: x:=y end sets the variable x to any value.

If the local variable is initialised immediately (eg to the value of the term t) then we have
the abbreviation:

begin x:=t: S end for begin x: x:=t; S end.

Deterministic Iteration: We define a while loop by using tail-recursion. If S:V → V then:
while B do S od =DF proc X ≡ if B then S; X fi.

Nondeterministic Iteration: If S1,...,Sm:V → V then:
do B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm od =DF while B1 ∨ . . . ∨Bm do if B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm fi od.

We have: WP(do B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm od ,R) =
∨

n<ωWP(do B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm

odn ,R)
where do B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm odn

=DF while
(

B1 ∨ . . . ∨Bm

)

do if B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm fi odn

Note that do B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm od0 = abort
and do B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm odn ≈ if BB → if B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm fi;

do B1 → S1 ⊓⊔ . . . ⊓⊔ Bm → Sm odn−1

⊓⊔ ¬BB → skip fi
for n>0, where BB = B1 ∨ . . . ∨Bm.

Counted Repetition: Suppose b,s and f are terms with all their variables in V and i is a variable in
V. Suppose S:V → V is a statement which does not assign to i or any of the variables in b,s or f.
Suppose we have a binary function + and a total order 6. Define the sequence of terms sn by:

s0 = b, sn+1 = sn+s
Then if the condition

∨

n<ω ¬
(

sn 6f
)

is true initially we can use b, f, s, i, + and 6 to define a for

10

loop as follows:
for i from b step s to f do S od =DF begin i:=b; while i6f do S; i:=i+s od end

This means that any for statement is guaranteed to terminate provided the statement
inside the loop terminates. Note that the counting variable i is a local variable to the block
surrounding S and so is not in the state space outside the loop.

Exit Statements:

Our programming language will include statements of the form exit(n), where n is an
integer, (not a variable) which occur within loops of the form do S od where S is a statement. These
were described in [Knuth 74] and more recently in [Taylor 84]. They are “infinite” or “unbounded”
loops which can only be terminated by the execution of a statement of the form exit(n) which causes
the program to exit the n enclosing loops. To simplify the exposition we will disallow exits from
which would terminate a block or a loop other than an unbounded loop).

Previously the only formal treatments of exit statements have treated them in the same
way as unstructured goto statements by adding “continuations” to the denotational semantics of all
the other statements. This adds greatly to the complexity of the semantics and also means that all the
results obtained prior to this modification will have to be re-proved with respect to the new
semantics. The approach taken in this thesis, which does not seem to have been tried before, is to
express every program which uses exit statements and unbounded loop in terms of the kernel
language we have already developed. This means that the new statements will not change the
denotational semantics of the kernel so all the transformations developed without reference to exit
statements will still apply in the more general case. In fact we will be making much use of the
transformations derived without reference to exits in the derivation of transformations of
statements which use the exit statement.

The interpretation of these statements in terms of the kernel language is as follows:
We have an integer variable depth which records the current depth of nesting of loops. At

the beginning of the program we have depth:=0 and each exit statement exit(k) is translated:
depth:=depth−k

since it changes the depth of “current execution” by moving out of k enclosing loops. To prevent any
more statements at the current depth being executed after an exit statement has been executed we
surround all statements by “guards” which are if statements which will test depth and only allow the
statement to be executed if depth has the correct value. Each unbounded loop do S od is
translated:

depth:=n ; while depth=n do guardn(S) od
where n is an integer constant representing the depth of the loop (1 for an outermost loop, 2 for

11

double nested loops etc.) and guardn(S) is the statement S with each component statement guarded
so that if the depth is changed by an exit statement then no more statements in the loop will be
executed and the loop will terminate. Formally we define guardn(S) by induction on the structure of
S as follows:

guardn({Q}) = {depth=n ⇒ Q}
guardn(x:=x′.Q) = if depth=n then x:=x′.Q fi
guardn(S1;S2) = guardn(S1); guardn(S2)

guardn(if B then S1 else S2fi) = if B then guardn(S1) else guardn(S2) fi
guardn(while B do S1 od) = if depth=n then while B do guardn(S1) od fi
guardn(begin x: S1 end) = begin x: guardn(S1) end

guardn(proc X ≡ S1.) = if depth=n then proc X ≡ guardn(S1). fi
guardn(X) = if depth=n then X fi

guardn(exit(k)) = if depth=n then depth:=depth−k fi
guardn(do S od) = if depth=n then depth:=n+1;

while depth=n+1 do guardn+1(S1) od fi
Note:
(i) The guards on the statements inside a while loop are not strictly needed (except within

further do loops) since we are not allowed to exit out of a while loop or a for loop.
(ii) exit statements are guarded like any other assignment.
(iii) We are not allowed to exit from a block.

Thus the weakest precondition of a program description involving do loops is:
WP(S,R) ⇐⇒ WP(depth:=0; guard0(S), R)

An exit statement which attempts to leave more loops than the number of loops enclosing it causes
termination of the whole program.

The important property of a guarded statement is that it will only be executed if depth
has the correct value. Thus: {depth6=n}; guardn(S) ≈ skip
So for exampl: exit; S ≈ exit
since: {depth=n}; guardn(exit; S)

≈ {depth=n}; if depth=n then depth:=depth-1 fi; guardn(S)
≈ {depth=n}; depth:=depth-1; {depth6=n}; guardn(S)
≈ {depth=n}; depth:=depth-1; skip
≈ {depth=n}; if depth=n then depth:=depth-1 fi
≈ {depth=n}; guardn(exit)

12

PROPERTIES OF WHILE

We define a “truncated while loop” while B do S odn to be the nth truncation of the
tail-recursive procedure ie:

while B do S od0 = abort
while B do S odn+1 = if B then S; while B do S odn fi.

From this we get the induction rule for iteration:
(i) If ∆ ⊢ while B do S odn 6 S′ for every n< ω then ∆ ⊢while B do S od 6 S′.
(ii) ∆ ⊢ while B do S odn 6 while B do S od for every n< ω.

This was proved by Back in [Back 80] for his version of while loop. However, we have
found the following much more general induction rule for recursion to be more useful:

Lemma: General Induction Rule for Recursion:
If ∆ ⊢ Sn 6S′ for all n< ω then ∆ ⊢ S6S′

where Sn is S with each procedure replaced by its n’th truncation -so that if S contains proc X ≡ S1.
then Sn contains proc X ≡ S1.

n.

Proof: We will in fact prove ∆ ⊢ S ≈
∨

n<ωSn, then ∆ ⊢Sn 6S′ for all n< ω gives
∆ ⊢ S ≈

∨

n<ωSn 6 S′ by the inference rule for infinite disjunction.
The proof is by induction on the structure of S using the following lexical order:
(i) Depth of recursion nesting.
(ii) Length of program text.

Consider Cases:
(i) S is x/y.Q. Then Sn =S and the result is trivial.
(ii) WP(S1;S2,R) ⇐⇒ WP(S1,WP(S2,R)) ⇐⇒

∨

n<ωWP(Sn
1 ,

∨

m<ωWP(Sm
2 ,R))

⇐⇒
∨

n,m<ωWP(Sn
1 ,WP(Sm

2 ,R)) ⇐⇒
∨

n,m<ωWP(Sn
1 ;Sm

2 ,R)
by properties of WP and induction hypothesis.
For all n,m< ω,
WP(Sn

1 ,WP(Sm
2 ,R)) ⇒ WP(Sn+m+1

1 ,WP(Sn+m+1

2 ,R)) since Sn
1 6Sn+m+1

1 etc.
⇒

∨

n<ωWP(Sn
1 ,WP(Sn

2 ,R)) ⇐⇒
∨

n<ωWP((S1;S2)
n,R)

So WP(S1;S2,R) ⇒
∨

n<ωWP((S1;S2)
n,R) by the inference rule for disjunction.

Conversely for any n< ω: WP((S1;S2)
n,R) ⇐⇒ WP(Sn

1 ,WP(Sn
2 ,R))

⇒
∨

n,m<ωWP(Sn
1 ,WP(Sm

2 ,R)) ⇐⇒ WP(S1;S2,R)

13

So WP(S1;S2,R) ⇐⇒
∨

n<ωWP((S1;S2)
n,R).

(iii) WP(oneof S1 ⊓⊔ S2 foeno ,R)
⇐⇒

∨

n<ωWP(Sn
1 ,R) ∧

∨

m<ωWP(Sm
2 ,R)

⇐⇒
∨

n,m<ω

(

WP(Sn
1 ,R) ∧ WP(Sm

2 ,R)
)

by the general distributive law in Lω1ω.

⇐⇒
∨

n<ω

(

WP(oneof S1 ⊓⊔ S2 foenonn,R)
)

by an argument similar to the previous case.
(iv) WP(if B then S1 else S2 fi ,R)

⇐⇒
(

B⇒WP(S1,R)
)

∧
(

¬B⇒WP(S2,R)
)

⇐⇒
(

B⇒
∨

n<ωWP(Sn
1 ,R)

)

∧
(

¬B⇒
∨

m<ωWP(Sm
2 ,R)

)

⇐⇒
∨

n,m<ω

((

B⇒WP(Sn
1 ,R)

)

∧
(

¬B⇒WP(Sm
2 ,R)

))

⇐⇒
∨

n<ω

((

B⇒WP(Sn
1 ,R)

)

∧
(

¬B⇒WP(Sn
2 ,R)

))

⇐⇒
∨

n<ωWP(if B then S1 else S2 fin ,R)

(v) WP(proc X ≡ S1. ,R) ⇐⇒
∨

n<ωWP(proc X ≡ S1.
n ,R)

Claim: WP(proc X ≡ S1.
n ,R) ⇐⇒

∨

k<ωWP(proc X ≡ Sk
1.

n ,R)
Proof of claim: by induction on n, for n=0 both sides are false.
Suppose true for n
WP(proc X ≡ S1.

n+1 ,R) ⇐⇒ WP(S1[proc X ≡ S1.
n/X], R)

⇐⇒ WP(S1,R)[WP(proc X ≡ S1.
n ,R)/WP(X,R)]

⇐⇒ WP(S1,R)[
∨

k<ωWP(proc X ≡ Sk
1.

n ,R)/WP(X,R)] by ind hyp.

⇐⇒
∨

k<ωWP(S1,R)[
∨

k<ωWP(proc X ≡ Sk
1.

n ,R)/WP(X,R)]
by the main induction hypothesis on S1 since S1 has a lower
depth of recursion nesting than S.

⇐⇒
∨

k<ωWP(S1,R)[WP(proc X ≡ Sk
1.

n ,R)/WP(X,R)]
by a simple induction on S1.

⇐⇒
∨

k<ωWP(proc X ≡ Sk
1.

n+1 ,R)
which proves the claim.

So WP(proc X ≡ S1. ,R) ⇐⇒
∨

n<ωWP(proc X ≡ S1.
n ,R) by the induction rule for recursion.

⇐⇒
∨

n,k<ωWP(proc X ≡ Sk
1.

n ,R) from the claim

⇐⇒
∨

k<ωWP(proc X ≡ Sk
1.

k ,R)

since Sk
1 6Sk+1

1 and proc X ≡ Sk
1.

n 6 proc X ≡ Sk
1.

n+1

14

This result gives rise to a general induction rule for iteration by replacing the while loops
by the equivalent recursive procedures.

PROVING TERMINATION

In this section we prove some important theorems which show how to prove that a loop
preserves an invariant, and which show how termination of an iterative or recursive statement can be
proved by using a well-founded order relation on the state and using a function on the variables which
yields a smaller value than the original value for each recursive call.

Dijkstra’s “Basic Theorems”

The following two theorems were derived by Dijkstra in [Dijkstra 76] for his version of the
weakest precondition. We will give proofs within Lω1ω for our WP.
Let BB=B1 ∨ ...∨Bn, IF=if B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn fi, DO=do B1 → S1 ⊓⊔ ... ⊓⊔ Bn → Sn od.

Theorem A:
(

Q⇒BB
)

∧
∧

16j6n

(

Q∧Bj ⇒ WP(Sj,R)
)

⇐⇒ Q⇒WP(IF,R).
This theorem will enable us to prove things about the if statement by dealing with each

guarded command in turn.

Proof:
(

Q⇒BB
)

∧
∧

16j6n

(

Q∧Bj ⇒ WP(Sj ,R)
)

⇐⇒
(

Q⇒BB
)

∧
∧

16j6n

(

Q⇒
(

Bj ⇒ WP(Sj,R)
))

⇐⇒
(

Q⇒BB
)

∧ Q⇒
∧

16j6n

(

Bj ⇒ WP(Sj ,R)
)

⇐⇒ Q⇒
(

BB ∧
∧

16j6n

(

Bj ⇒ WP(Sj,R)
))

⇐⇒ Q⇒WP(IF,R)

Cor:
(

Q∧B ⇒ WP(S1,R)
)

∧
(

Q∧ ¬B ⇒ WP(S2,R)
)

⇐⇒ Q ⇒
((

B⇒WP(S1,R)
)

∧
(

¬B⇒WP(S2,R)
))

⇐⇒ Q ⇒ WP(if B then S1 else S2 fi, R)

Theorem B: If P∧BB ⇒ WP(IF,P) then P∧WP(DO,true) ⇒ WP(DO,P∧ ¬BB).
This says that if a loop terminates and if the body of the loop preserves the invariant P

then if the loop is started in a state which satisfies P then it preserves P and terminates in a state with
¬BB true.

Proof: WP(DO,true) ⇐⇒
∨

n<ωWP(DOn,true), DOn+1 ≈ if BB then IF; DOn fi

15

We have P∧BB ⇒ WP(IF,P)
P∧WP(DO,true) ⇐⇒ P∧

∨

n<ωWP(DOn,true)

⇐⇒
∨

n<ω

(

P∧
(

BB⇒WP(IF;DOn−1,true)
)

∧
(

¬BB⇒true
))

⇐⇒
∨

n<ω

(

P∧
(

BB⇒WP(IF;DOn−1,true)
))

Claim: P∧
(

BB⇒WP(IF;DOn,true)
)

⇒ WP(DOn+1,P∧ ¬BB) for all n< ω.
Then P∧WP(DO,true) ⇒

∨

n<ωWP(DOn,P∧ ¬BB) ⇐⇒ WP(DO,P∧ ¬BB) as required.

Proof of claim: By induction on n.
For n=0: P∧

(

BB⇒WP(IF;DO0,true)
)

⇐⇒ P∧
(

BB⇒false
)

⇐⇒ P∧ ¬BB

WP(DO1,P∧ ¬BB) ⇐⇒
(

BB ⇒ WP(IF;DO0,P∧ ¬BB)
)

∧
(

¬BB ⇒ P∧ ¬BB
)

⇐⇒
(

BB ⇒ false
)

∧
(

¬BB ⇒ P
)

⇐⇒ P∧ ¬BB
So suppose the result holds for n:
P∧

(

BB⇒WP(IF;DOn+1,true)
)

⇐⇒ P∧
(

BB⇒WP(IF,
(

BB⇒WP(IF;DOn,true)
)

)
)

We have P∧BB⇒WP(IF,P) so: ⇒ P∧
(

BB⇒WP(IF,P)∧WP(IF,
(

BB⇒WP(IF;DOn,true)
)

)
)

⇒ P∧
(

BB⇒WP(IF, P∧
(

BB⇒WP(IF;DOn,true)
)

)
)

⇒ P∧
(

BB⇒WP(IF, WP(DOn+1,P∧ ¬BB))
)

by induction hypothesis.
⇒ WP(DOn+2,P∧ ¬BB)

which proves the result by induction.

Cor: If
∧

16j6n

(

P∧Bj ⇒ WP(Sj,P)
)

then P∧WP(DO,true) ⇒ WP(DO,P∧ ¬BB)

Proof: Use Theorem A with Q = P∧BB and R = P, the theorem gives P∧BB ⇐⇒ WP(IF,P)
and
Theorem B then gives P∧WP(DO,true) ⇒ WP(DO,P∧ ¬BB).

Our next theorem will give us a method by which we can prove that a loop terminates
provided each iteration of the body decreases the value of some function of the state under some
well-founded ordering.

Defn: A partial order 4 on some set Γ is well-founded if every non-empty subset of Γ has a
minimal element under 4. ie:

∀Γ′ ⊆ Γ.
(

Γ′ 6= ∅ ⇒ ∃ζ ∈ Γ′.∀λ ∈ Γ′
(

ζ 4 λ
))

.
We write ζ ≺ λ if ζ 4 λ ∧ ζ 6= λ. We also define minimal(ζ) to mean “ζ is a minimal element” ie:

minimal(ζ) =DF ∀ζ′ ∈ Γ.
(

ζ′ 4 ζ ⇒ ζ′ = ζ
)

16

Theorem: Proving Termination: If 4 is a well-founded partial order on some set Γ and t is a
term giving values in Γ and t0 is a variable which does not occur in IF then if
(i) P∧BB ⇒ WP(IF,P) and
(ii) ∀t0.

((

P∧BB∧ t4t0

)

⇒ WP(IF,t≺t0)
)

then P⇒WP(DO,true).

Proof: WP(DO,true) ⇐⇒
∨

n<ωWP(DOn,true) ⇐⇒
∨

n<ω

(

BB ⇒ WP(IF,WP(DOn−1,true))
)

If λ is any minimal element of Γ then t≺ λ is false whatever the value of t is. Also t4 λ ⇐⇒
t= λ so putting t0 = λ in (ii) gives

(

P∧BB∧ t= λ
)

⇒ WP(IF,t≺ λ) ⇐⇒ WP(IF,false) ⇐⇒ false
This is true for all λ such that minimal(λ) holds ie

∀λ.
((

minimal(λ)∧P∧BB∧ t= λ
)

⇒ false
)

ie minimal(t)∧P∧BB ⇒ false
ie ¬

(

minimal(t)∧P∧BB
)

ie (iii) P∧BB ⇒ ¬minimal(t).

Claim: For any λ ∈ Γ, P∧ t4 λ ⇒ WP(DO,true)
Proof of claim:
WP(DO1,true) ⇐⇒ BB⇒WP(IF,WP(DO0,true))

⇐⇒ BB⇒WP(IF,false) ⇐⇒ BB⇒false ⇐⇒ ¬BB
WP(DO1,true)⇒WP(DO,true) so ¬BB⇒WP(DO,true)

(a): If λ is a minimal element of Γ then:
From (iii) we have P∧BB⇒ ¬minimal(t). ¬minimal(t) ⇒

(

λ 4t⇒ λ ≺t
)

so

P∧BB⇒ ¬minimal(t) ⇒ ¬
(

P∧BB
)

∨
(

λ 4t⇒ λ ≺t
)

⇐⇒ ¬P ∨ ¬BB ∨
(

λ 4t⇒ λ ≺t
)

⇐⇒
(

P∧ ¬
(

λ 4t⇒ λ ≺t
))

⇒ ¬BB

⇐⇒
(

P∧ ¬
(

t≺ λ ∨ λ ≺t
))

⇒ ¬BB

⇐⇒
(

P∧ ¬
(

t≺ λ ∨ λ ≺t
))

⇒ ¬BB

⇐⇒
(

P∧ λ 4t∧ t4 λ
)

⇒ ¬BB

λ is a minimal element so t4 λ ⇒ t= λ ⇒ λ 4t. So
P∧BB⇒ ¬minimal(t) ⇒

(

P∧ λ 4t
)

⇒ ¬BB.

So P∧BB⇒ ¬minimal(t) ⇒
(

P∧ λ 4t
)

⇒WP(DO,true) as required.

17

(b): Suppose λ is not a minimal element of Γ and suppose the result holds for all δ ≺ λ. Then:
(

P∧BB∧ t4 λ
)

⇒ WP(IF, P∧ t≺ λ) by (i) and (ii).

⇒ WP(IF, P∧ ∃δ.
(

δ ≺ λ ∧ t4 δ
)

) since λ is not minimal.

⇒ WP(IF, ∃δ.
(

δ ≺ λ ∧P∧ t4 δ
)

) since δ does not occur free in P.

P∧ δ ≺ λ ∧ t4 δ ⇒ WP(DO,true) by assumption.
So

(

P∧BB∧ t4 λ
)

⇒ WP(IF, ∃δ.
(

δ ≺ λ ∧WP(DO,true)
)

)
⇒ WP(IF, WP(DO,true)∧ ∃δ.δ ≺ λ)

since δ does not occur free in WP(DO,true)
⇒ WP(IF, WP(DO,true))

since ∃δ.δ ≺ λ is true as λ is not minimal.
(

P∧ ¬BB∧ t4 λ
)

⇒ ¬BB
Combining the two implications:
(

P∧ t4 λ
)

⇒ ¬BB∨WP(IF,WP(DO,true))
⇐⇒ BB⇒WP(IF,WP(DO,true))
⇐⇒ BB⇒WP(IF,

∨

n<ωWP(DOn,true))

⇐⇒
∨

n<ω

(

BB⇒WP(IF,WP(DOn,true))
)

⇐⇒
∨

n<ωWP(DOn+1,true)
⇐⇒ WP(DO,true) as required.

The proof of the claim is by a form of “well-founded induction”:
Consider the set Γ′ = {λ ∈ Γ|¬

(

P∧ t4 λ ⇒ WP(DO,true)
)

}. Suppose this is non-
empty, then since 4 is well-founded there exists a minimal element ζ ∈ Γ′. ζ is not a minimal
element of Γ by (a) above. If δ ≺ ζ then

(

P∧ t4 δ ⇒ WP(DO,true)
)

holds. But then by (b)

above we have
(

P∧ t4 ζ ⇒ WP(DO,true)
)

holds. Contradiction.

So Γ′ must be empty and so
(

P∧ t4 λ ⇒ WP(DO,true)
)

holds for all λ ∈ Γ which
proves the claim.

Finally to prove the theorem we start with the claim:
∀λ ∈ Γ.

(

P∧ t4 λ ⇒ WP(DO,true)
)

⇐⇒ ∀λ ∈ Γ.
(

¬
(

P∧ t4 λ
)

∨ WP(DO,true)
)

⇐⇒ ∀λ ∈ Γ.
(

¬P ∨ λ ≺t ∨ WP(DO,true)
)

⇐⇒ ∀λ ∈ Γ.
(

¬
(

P∧ ¬WP(DO,true)
)

∨ λ ≺t
)

⇐⇒ ∀λ ∈ Γ.
((

P∧ ¬WP(DO,true)
)

⇒ λ ≺t
)

⇐⇒
(

P∧ ¬WP(DO,true)
)

⇒ ∀λ.
(

λ ≺t
)

18

⇐⇒
(

P∧ ¬WP(DO,true)
)

⇒ false since ∃λ.t4 λ (t gives values in Γ)

⇐⇒ ¬
(

P∧ ¬WP(DO,true)
)

⇐⇒ ¬P ∨ WP(DO,true)
⇐⇒ P ⇒ WP(DO,true) as required.

Note: Dijkstra’s version of the theorem had Γ = ω with 4 as 6 (the usual order on integers) and
(iia) ∀t0.

((

P∧BB∧ t6t0+1
)

⇒ WP(IF,t6t0)
)

and
(iiia) P∧BB ⇒ t6=0

as premises. Our premise (ii) is equivalent to (iia) ∧ (iiia) in this case. However, if we take Γ to be a
larger ordinal than ω the theorem fails with his version of the premises:
For example: take P ⇐⇒ t= ω, BB ⇐⇒ true, and Si =skip. Then (i), (iia) and (iiia) hold but the loop
obviously fails to terminate and so P⇒WP(DO,true) fails.
Our premise (ii) does not hold for this example, it fails for t0 = ω.

This is a useful extension of Dijkstra’s theorem because it allows us to use any well-
founded relation to prove termination -for instance the order relation on any ordinal number is well-
founded. For example if we can show that the body of a loop decreases the list 〈a1,...,ak〉 of integer
variables according to their lexicographical order then we can use this tuple as our term t and take
Γ = N

k and 4 as the lexical order on Γ. Our theorem can then be applied to prove termination. It is
not possible to find an integer function of a list of integers which preserves the lexicographical order
since a list of values may have an infinite number of other lists below it in the order. Hence Dijkstra’s
theorem cannot be used in this common instance.

Using theorem A we see that (ii) holds if
∧

16j6n ∀t0.
((

P∧Bj ∧ t4t0

)

⇒WP(Sj ,t≺t0)
)

.
Let tmin be the least element of {t0 ∈ Γ|WP(S,t≺t0)} (if this is non-empty). If tmin 4t

holds initially then the execution of S must decrease t because the smallest bound greater than any
final value of t is less than or equal to the initial value of t. We call the predicate tmin 4t Wdec(S,t), it
is false if there is no t0 such that WP(S,t≺t0) holds, so we have:

Wdec(S,t)=DF ∃t0.WP(S,t≺t0)
∧ ∀tmin.

((

WP(S,t≺tmin) ∧ ∀t0.
(

WP(S,t≺t0)⇒tmin 4t0

))

⇒ tmin 4t
)

Theorem: ∀t0.
(

t4t0 ⇒ WP(S,t≺t0)
)

⇐⇒ Wdec(S,t)

19

Proof: “⇒”:
Let tmin be arbitrary such that WP(S,t≺tmin) and ∀t0.

(

WP(S,t≺t0)⇒tmin 4t0

)

.
Assume for contradiction that t≺tmin, then there exists λ ∈ Γ such that t4 λ ≺tmin.
t4 λ ⇒ WP(S,t≺ λ) since ∀t0.

(

t4t0 ⇒ WP(S,t≺t0)
)

λ ≺tmin ⇒ ¬WP(S,t≺ λ) since ∀t0.
(

WP(S,t≺t0)⇒tmin 4t0

)

. Contradiction.
So tmin 4t0 and Wdec(S,t) holds since tmin was arbitrary.

“ =⇒ ”: Let t0 be arbitrary such that t4t0 and assume Wdec(S,t).
{λ|WP(S,t≺ λ)} 6= ∅ since ∃λ.WP(S,t≺ λ) since Wdec(S,t) holds.
Let tmin be any minimal element of {λ|WP(S,t≺ λ)}, one exists since 4 is well-founded. Then
WP(S,t≺tmin) and λ ≺tmin ⇒ ¬WP(S,t≺ λ) since tmin is a minimal element.
So ∀λ.

(

WP(S,t≺ λ) ⇒ tmin 4 λ
)

.
So by premise tmin 4t. t4t0 by assumption so tmin 4t0 so
WP(S,t≺tmin)⇒WP(S,t≺t0) so we have WP(S,t≺t0) as required.

Putting these results together we have:

Theorem: If P ⇒
∧

16j6n

(

Bj ⇒ WP(Sj ,P) ∧ Wdec(Sj ,t)
)

then P ⇒ WP(DO,P∧ ¬BB).
which can be read as: if each Sj preserves P and decreases t when Bj and P are true initially, then if
DO is started in a state which satisfies P it will terminate in a state with P true and all Bj false.

Proving Termination of Recursive Statements

Theorem: Invariant maintenance:
(i) If for any S1∆ ⊢ {P};S[S1/X] 6 S[{P};S1/X]

then ∆ ⊢ {P}; proc X ≡ S. 6 proc X ≡ {P};S.
(ii) If in addition ∆ ⊢ {P};S1 6 S1;{P} implies ∆ ⊢ {P};S[S1/X] 6 S[S1/X];{P}

then ∆ ⊢ {P}; proc X ≡ S. 6 proc X ≡ S. ;{P}

Proof:
(i) Claim: {P}; proc X ≡ S.n 6 proc X ≡ {P};S.n for all n.

Then result follows from the induction rule for recursion.
Proof of Claim: For n=0 both sides are abort.
So suppose the result holds for n
{P}; proc X ≡ S.n+1 ≈ {P};S[proc X ≡ S.n/X] Put S1 = proc X ≡ S.n in the premise

20

6 S[{P}; proc X ≡ S.n/X]
6 ({P};S)[{P}; proc X ≡ S.n/X]
6 ({P};S)[proc X ≡ {P};S.n/X] by the induction hypothesis and replacement
6 proc X ≡ {P};S.n+1.

Hence the result by induction.

(ii) Claim: {P}; proc X ≡ S.n 6 proc X ≡ S.n ;{P} for all n.
Then result follows from the induction rule for recursion.
Proof of Claim: For n=0 both sides are abort.
So suppose the result holds for n
{P};proc X ≡ S.n+1 ≈ {P};S[proc X ≡ S.n/X]

6 {P};S[{P};proc X ≡ S.n/X] by part (i).
Put S1 =proc X ≡ S.n in the premise:
{P};proc X ≡ S.n 6 proc X ≡ S.n;{P} by induction hypothesis so
{P};proc X ≡ S.n+1 6 proc X ≡ S.n+1;{P}
Hence the result by induction.

Theorem: If 4 is a well-founded partial order on some set Γ and t is a term giving values in Γ
and t0 is a variable which does not occur in S then if
(i) ∀t0.

((

P∧ t4t0

)

⇒ WP(S[{P∧ t≺t0}/X],true)
)

then P ⇒ WP(proc X ≡ S.,true).
Proof: Putting t0 =t in (i) gives
(ii) P ⇒ WP(S[{P}/X],true)

For any minimal element λ of Γ we can put t0 = λ in (ii) as above and get
(

P∧ t4 λ
)

⇒ WP(S[{t≺ λ}/X],true)
)

⇒
WP(S[{false}/X],true) ⇒ WP(S[abort/X],true)

t4 λ ⇒ t= λ and the above holds for any minimal λ so we get
(iii) P∧minimal(t) ⇒ WP(S[abort/X],true).

WP(proc X ≡ S. ,true) ⇐⇒
∨

n<ωWP(proc X ≡ S.n, true)
⇐⇒

∨

n<ωWP(S[proc X ≡ S.n−1/X], true)

Claim: For any λ ∈ Γ, P∧ t4 λ ⇒ WP(proc X ≡ S., true).
Proof of Claim: Assume P∧ t4 λ.
(a) If λ is a minimal element of Γ then (iii) gives
WP(S[abort/X],true) (under our assumption).

21

ie WP(S[abort/X],true) ⇐⇒ WP(proc X ≡ S.1,true) ⇒
∨

n<ωWP(proc X ≡ S.n, true)
⇒ WP(proc X ≡ S., true)

(b) Suppose λ is not a minimal element of Γ and suppose the result holds for all δ ≺ λ. Then
putting t0 = λ in (i) gives

P∧ t4 λ ⇒ WP(S[{t≺ λ}/X],true)
t≺ λ ⇒ ∃δ. t4 δ ≺ λ ⇒ ∃δ ≺ λ. t4 δ

By the induction hypothesis we have P ∧ δ ≺ λ ∧ t4 δ ⇒ WP(proc X ≡ S.,true).
So WP(S[{t≺ λ}/X],true) ⇒ WP(S[{P ∧ t≺ λ}/X],true) by (i)

⇒ WP(S[{P ∧ ∃δ.δ ≺ λ ∧ t4 δ}/X],true)
⇒ WP(S[{∃δ.δ ≺ λ ∧ WP(proc X ≡ S ,true)}/X],true)

by hypothesis and the Replacement Theorem.

λ not minimal implies ∃δ.δ ≺ λ and as δ and λ do not occur in S this is invariantly true so can
be removed from any assertion. We get

⇒ WP(S[{WP(proc X ≡ S.,true)}/X],true)
⇒ WP(S,true)[WP({WP(proc X ≡ S.,true)} ,true)/WP(X,true)]

Now WP({Q},R) ⇐⇒ Q∧R by definition so this is
⇒ WP(S,true)[WP(proc X ≡ S.,true)}/WP(X,true)]
⇒ WP(S[proc X ≡ S./X],true)
⇒ WP(proc X ≡ S.,true) by folding.

Consider the set Γ′ = {λ ∈ Γ|¬
(

P∧ t4 λ ⇒ WP(proc X ≡ S.,true)
)

}. Suppose this is non-empty,
then since 4 is well-founded there exists a minimal element ζ ∈ Γ′. ζ is not a minimal element of
Γ by (a) above. If δ ≺ ζ then

(

P∧ t4 δ ⇒ WP(proc X ≡ S.,true)
)

holds. But then by (b) above

we have
(

P∧ t4 ζ ⇒ WP(proc X ≡ S.,true)
)

holds which is a contradiction.

So Γ′ must be empty and so
(

P∧ t4 λ ⇒ WP(proc X ≡ S.,true)
)

holds for all λ ∈ Γ which
proves the claim.

Finally: ∀λ ∈ Γ.
(

P∧ t4 λ ⇒ WP(proc X ≡ S.,true)
)

⇐⇒ P ⇒ WP(proc X ≡ S.,true) as was proved above for DO.

Let tmin be the least element of {t0 ∈ Γ|WP(S[{t≺t0}/X],true)} (if this is non-empty).
If tmin exists and tmin 4t initially then any calls of X in the execution of S must be started in a state in
which t is smaller than it was initially because the smallest bound greater than any possible value of t
at a call of X is less than or equal to the initial value of t.

22

We call the predicate tmin 4t WdecX(S,t), it is false if there is no t0 such that
WP(S[{t≺t0}/X],true) holds, so we have:
WdecX(S,t)=DF ∃t0. WP(S[{t≺t0}/X],true)

∧ ∀tmin.
((

WP(S[{t≺tmin}/X],true)

∧ ∀t0.
(

WP(S[{t≺t0}/X],true)⇒tmin 4t0

))

⇒ tmin 4t
)

Theorem: ∀t0.
(

t4t0 ⇒ WP(S[{t≺t0}/X],true)
)

⇐⇒ WdecX(S,t)

Proof: “⇒”: Let tmin be arbitrary such that WP (S[{t≺tmin}/X],true) and
∀t0.

(

WP(S[{t≺t0}/X],true)⇒tmin 4t0

)

.
Assume for contradiction that t≺tmin.
Then there exists λ ∈ Γ such that t4 λ ≺tmin.
t4 λ ⇒ WP(S[{t≺ λ}/X],true) since ∀t0.

(

t4t0 ⇒ WP(S[{t≺t0}/X],true)
)

λ ≺tmin ⇒ ¬WP(S[{t≺ λ}/X],true) since ∀t0.
(

WP(S[{t≺t0}/X],true)⇒tmin 4t0

)

.
Contradiction.
So tmin 4t0 and WdecX(S,t) holds since tmin was arbitrary.

“ =⇒ ”: Let t0 be arbitrary such that t4t0 and assume WdecX(S,t).
{λ|WP(S[{t≺ λ}/X],true)} 6= ∅ since ∃λ.WP(S[{t≺ λ}/X],true) since WdecX(S,t) holds.
Let tmin be any minimal element of {λ|WP(S[{t≺ λ}/X],true)}, one exists since 4 is well-
founded.
Then WP(S[{t≺tmin}/X],true) and λ ≺tmin ⇒ ¬WP(S[{t≺ λ}/X],true) since tmin is a minimal
element.
So ∀λ.

(

WP(S[{t≺ λ}/X],true) ⇒ tmin 4 λ
)

.

So by premise tmin 4t. t4t0 by assumption so tmin 4t0 so
WP(S[{t≺tmin}/X],true) ⇒ WP(S[{t≺t0}/X],true) which was required.

Putting these results together we have:

Theorem: If
(i) P ⇒ WP(S[{P}/X],true) and
(ii) For any S1: {P};S1 6 S1;{P} ⇒ {P};S[S1/X] 6 S[S1/X];{P}
(iii) For any S1: {P};S[S1/X] 6 S[{P};S1/X]
(iv) P ⇒ WdecX(S,t)

23

Then P ⇒ WP(proc X ≡ S. ,P).

The second premise states that if all recursive calls of S in proc X ≡ S. were replaced by
any statement which preserved P then the statement so formed would preserve P.

PROOF RULES FOR IMPLEMENTATION

Having introduced the programming language and proof method we will illustrate it by
some examples of simple program refinements and transformations. In the next Chapter we develop
some basic transformation rules and the conditions under which they will work. First however we
develop a general proof rule by which the correctness of an implementation of a specification such as
{P};x:=x′.Q may be shown and a proof rule for proving that a given recursive procedure statement is
a correct implementation of a given statement. This latter rule is very important in the process of
transforming a specification expressed using recursion into a recursive procedure which implements
it. The recursive procedure may then be further transformed into an iterative program, if required,
using the techniques presented later in this Thesis.

Theorem: Let ∆ be a countable set of sentences of L. Let V be a finite nonempty set of program
variables and S a program description or abstraction in V. Let y be a list of all the variables in V−x
not constant in S. Let x0, y0 be lists of distinct program variables not in S or V with ℓ(x0)= ℓ(x)
and ℓ(y0)= ℓ(y).
If ∆ ⊢P∧x=x0 ∧y=y0 ⇒ WP(S,Q[x0/x,x/x′]∧y=y0)
then ∆ ⊢{P};x:=x′.Q 6 S

The premise states that if x0 and y0 contain the initial values of x and y then S preserves
the value of y and sets x to a value x′ such that the relationship between the initial value of x and x′

satisfies Q. This was proved in [Back 80] for iterative programs, the extension to include recursive
programs is straightforward.

Cor A: By the same assumptions as above we have:
κ∆ ⊢

(

∃x′.Q
)

∧
(

x=x0

)

∧
(

y=y0

)

⇒ WP(S,Q[x0/x,x/x′]∧y=y0) implies ⊢ x:=x′.Q 6 S

Cor B: For the assignment x:=t in V we have:
κ∆ ⊢P∧x=x0 ∧y=y0 ⇒ WP(S,x=t[x0/x]∧y=y0) implies ⊢ {P};x:=t 6 S

This theorem is useful for implementing simple specifications. More complex
specifications will be implemented as recursive or iterative procedures: in either case we can use the

24

following theorem to develop a recursive implementation as the first stage. This can be transformed
into an iterative program (if required) using the techniques on recursion removal which we will
develop in later chapters.

Recursive Implementation of Specifications

Suppose we have a specification {P};x=x′.Q we wish to implement as a recursive
procedure. If we have a statement S which contains the statement variable X (representing recursive
calls to S) and can prove S′ 6S[S′/X] ie if given that the recursive calls of S “work” then so does
S, and in addition we can find some term which is decreased for the inner calls then we can deduce
S′ 6 proc X ≡ S.. Thus we can gradually transform the specification S′, by splitting it into cases etc.
until we get a statement S which is defined in terms of S′ but for which we can find a term which is
reduced before each occurrence of S′. Then using the next theorem we can immediately deduce
S′ 6 proc X ≡ S. which no longer contains S′. This is the motivation for the next theorem which we
will prove for any type of statement S′ (ie we will not restrict ourselves to specifications).

Theorem: If 4 is a well-founded partial order on some set Γ and t is a term giving values in Γ
and t0 is a variable which does not occur in S then if
(i) ∀t0.

((

P ∧ t4t0

)

⇒ S′ 6S[{P ∧ t≺t0}; S′/X]
)

then P ⇒ S′ 6proc X ≡ S..

Proof: From (i) we get ∀t0.
((

P ∧ t4t0

)

⇒ S′ 6S[{P};S′/X]
)

by removing an assertion and
putting t=t0 in this gives:
(ii) P ⇒ S′ 6S[{P};S′/X]

If λ is any minimal element of Γ then putting t0 = λ in (i) gives
(

P ∧ t4 λ
)

⇒ S′ 6S[{P ∧ t≺ λ};S′/X] ⇒ S′ 6S[abort;S′/X] ⇒ S′ 6S[abort/X]
since t≺ λ ⇐⇒ false. So as before we get
(iii) P∧minimal(t) ⇒ S′ 6S[abort/X]

Claim: For any λ ∈ Γ, P∧ t4 λ ⇒ S′ 6proc X ≡ S..

Proof of Claim: Assume P∧ t4 λ.
(a) If λ is a minimal element of Γ then (iii) gives
S′ 6 S[abort/X] ≈ proc X ≡ S.1 6

∨

n<ωproc X ≡ S.n ≈ proc X ≡ S. as required.

25

(b) Suppose λ is not a minimal element of Γ and suppose the result holds for all δ ≺ λ.
Then putting t0 = λ in (i) gives

P∧ t4 λ ⇒ S′ 6S[{P ∧ t≺ λ};S′/X]
)

t≺ λ ⇒ ∃δ. t4 δ ≺ λ ⇒ ∃δ ≺ λ. t4 δ

By the induction hypothesis we have P ∧ δ ≺ λ ∧ t4 δ ⇒ S′ 6proc X ≡ S.
ie {P ∧ t≺ λ};S′ 6 proc X ≡ S.
So S′ 6 S[{P ∧ ∃δ ≺ λ. t4 δ};S′/X]

)

6 S[{∃δ ≺ λ. P ∧ t4 δ};S′/X]
)

6 S[{∃δ ≺ λ}; proc X ≡ S./X]
)

by hypothesis and Replacement.

λ not minimal implies ∃δ.δ ≺ λ and as δ and λ do not occur in S this is invariantly true so can
be removed from any assertion. We get
S′ 6 S[proc X ≡ S./X]

)

≈ proc X ≡ S. by folding.

Consider the set Γ′ = {λ ∈ Γ|¬
(

P∧ t4 λ ⇒ S′ 6proc X ≡ S.
)

}. Suppose this is non-empty, then
since 4 is well-founded there exists a minimal element ζ ∈ Γ′. ζ is not a minimal element of Γ
by (a) above. If δ ≺ ζ then

(

P∧ t4 δ ⇒ S′ 6proc X ≡ S.
)

holds. But then by (b) above we have
(

P∧ t4 ζ ⇒ S′ 6proc X ≡ S.
)

holds which is a contradiction.

So Γ′ must be empty and so
(

P∧ t4 λ ⇒ S′ 6proc X ≡ S.
)

holds for all λ ∈ Γ which proves the
claim.

Finally ∀λ ∈ Γ.
(

P∧ t4 λ ⇒ S′ 6proc X ≡ S.
)

⇐⇒
(

P ⇒ S′ 6proc X ≡ S.
)

as was proved above for DO.

At first sight it might appear that the theorem on proving termination of a recursive
statement is a special case of this theorem with S′ =skip but this is not the case because the premise
of that theorem is weaker (only requiring WP(S[{P∧ t≺t0}/X],true) rather than
skip6S[{P∧ t≺t0}/X] which is equivalent to R⇒WP(S[{P∧ t≺t0}/X],R) -in the first case we don’t
care what else S[{P∧ t≺t0}/X] does so long as it terminates) and the conclusion is also weaker (the
first heorem merely proves that proc X ≡ S. terminates, the second also proves that it preserves the
state). The first theorem is solely concerned with termination (and hence is useful if partial
correctness has been established independently) the second with the implementation of a
specification (and hence proving termination wherever the specification terminates).

26

To summarise:
(i) If P ∧ x=x0 ∧ y=y0 ⇒ WP(S,Q[x0/x,x/x′] ∧ y=y0)

then {P}; x:=x′.Q 6 S.
where y are the variables other than those in x which are not constant in S.
(ii) If ∀t0

((

P ∧ t4t0

)

⇒ S′ 6 S[{P ∧ t≺t0}/X]
)

then {P}; S′ 6 proc X ≡ S..

Putting these together gives:

Cor: Recursive Implementation of a Specification:
If

(

P ∧ t4t0 ∧ x=x0 ∧ y=y0

)

⇒ WP(S[[{P ∧ t≺t0}; x:=x′.Q / X], Q[x0/x,x/x′] ∧ y=y0)
then {P}; x:=x′.Q 6 proc X ≡ S..

This theorem is a fundamental result towards our aim of a system for transforming
specifications into programs since it “bridges the gap” between a recursively defined specification
and a recursive procedure which implements it. It is of use even when the final program is iterative
rather than recursive since many iterative algorithms may be more easily and clearly specified as
recursive functions–even if they may be more efficiently implemented as iterative procedures. This
theorem may be used by the programmer to transform the recursively defined specification into a
recursive procedure or function which can then be transformed into an iterative procedure. In
subsequent chapters we will prove many transformations which will make the transition from
recursion to iteration very straightforward.

Example:
Suppose we have the specification: x:=n! ie x:=x′.

(

x′ =n!
)

with the precondition P = n>0 ∧ n∈ N

(where n! is the usual factorial function). We claim that the recursive statement proc X ≡ S. implements
this specification where:
S= if n=0 then x:=1

else n:=n−1; X; n:=n+1; x:=x.n fi.

For the term t we simply take n itself. The only variable other than x which is not
constant in S is n. We need to prove:
(

n>0 ∧ n6t0 ∧ x=x0 ∧ n=n0

)

⇒
WP(if n=0 then x:=1

else n:=n−1; {n>0 ∧ n<t0}; x:=n! ;
n:=n+1; x:=x.n fi ,

(

x=n! ∧ n=n0

)

)

27

Assume n>0 ∧ n6t0 ∧ x=x0 ∧ n=n0.
Then WP(if... fi,

(

x=n! ∧ n=n0

)

)

⇐⇒
(

n=0 ⇒ WP(x:=1,
(

x=n! ∧ n=n0

)

)

∧
(

n6=0 ⇒ WP(n:=n−1; {n>0 ∧ n<t0}; x:=n! ; n:=n+1; x:=x.n,
(

x=n! ∧ n=n0

)

)
)

Assume n=0. Then:
WP(x:=1,

(

x=n! ∧ n=n0

)

) ⇐⇒ 1=n! ∧ n=n0 which follows from the assumptions.

On the other hand, assume n6=0. Then:
WP(n:=n−1; {n>0 ∧ n<t0}; x:=n! ; n:=n+1; x:=x.n,

(

x=n! ∧ n=n0

)

)

⇐⇒ WP(n:=n−1; {n>0 ∧ n<t0},
(

x=n! ∧ n=n0

)

[x.n/x][n+1/n][n!/x])
(from the theorem giving the WP of an assignment statement.)

⇐⇒ WP(n:=n−1,
(

n>0 ∧ n<t0

)

∧
(

n!.
(

n+1
)

=
(

n+1
)

! ∧ n+1=n0

)

)
(from the theorem giving the WP of an assertion.)

⇐⇒
(

n−1>0 ∧ n−1<t0

)

∧
((

n−1
)

!.
((

n−1
)

+1
)

=
((

n−1
)

+1
)

! ∧
(

n−1
)

+1=n0

)

⇐⇒ n−1>0 ∧ n−1<t0 ∧
(

n−1
)

!.n=n! ∧ n=n0

These all follow from the assumptions n>0 and n6t0 and the definition of the factorial function.

Hence (by the corollary above):
x:=n! 6 proc X ≡ if n=0 then x:=1

else n:=n−1; X; n:=n+1; x:=x.n fi.

Although this has enabled us to rigorously prove that this recursive procedure implements
the factorial function the theorems we have proved so far do not give us any help in deriving such a
recursive procedure given the specification –here we simply “pulled it out of a hat” and proved that
it worked (following a long tradition of examples of program verification!). Much of the rest of this
Thesis is devoted to devising methods and results, rigorously supported by their foundation in
infinitary logic, which will assist in transforming specifications into programs. For example, we will
be able to derive this version of the factorial function from the specification and then transform it to
an iterative form using a for loop.

28

