
The Formal Semantics of Program Slicing for
Non-Terminating Computations

Martin Ward and Hussein Zedan

Abstract—Since the original development of program slicing in 1979 [1] there have been many attempts to define a suitable semantics

which will precisely define the meaning of a slice. Particular issues include handling termination and non-termination, slicing

non-terminating programs and slicing nondeterministic programs. In this paper we review and critique the main attempts to construct a

semantics for slicing and present a new operational semantics which correctly handles slicing for non-terminating and nondeterministic

programs. We also present a modified denotational semantics which we prove to be equivalent to the operational semantics. This

provides programmers with two different methods to prove the correctness of a slice or a slicing algorithm, and means that the program

transformation theory and FermaT transformation system, developed over the last 25 years of research, and which has proved so

successful in analysing terminating programs, can now be applied to non-terminating interactive programs.

✦

1 Introduction

THE traditional denotational semantics treats a program
as a “black box” which is provided with an initial

state on which it starts execution, processes for a while
and finally either terminates in a final state or continues
processing forever without terminating. If the program is
deterministic then, on termination, each initial state leads to
a unique final state, while a nondeterministic program may
have more than one possible final state for each initial state.
Since the semantics “abstracts away” the internal sequence
of operations of the program, it can say nothing about a
non-terminating program, apart from the fact that it does
not terminate. Typically, non-termination is defined using a
special “final state”, ⊥ which does not define values for any
variables.

Combined with weakest preconditions expressed in in-
finitary logic [2], this approach has proved very powerful
in the development of a theory of program transformations
which has been applied successfully to program develop-
ment, refinement, reverse engineering and software migra-
tion [2,3,4,5,6,7,8,9,10,11,12].

However, for a program which interacts with its envi-
ronment, such as an embedded system, the program may
produce useful output before it terminates, and may indeed
never terminate: in fact, non-termination may well be a
requirement. With an interactive system, we are interested
in the sequence of interactions with the environment, and
not just the final state. We would still like to “abstract away”
everything that happens in between these interactions. In
other words, we are interested in the values of certain vari-
ables of interest at certain points of interest in the program.
This is precisely the semantics of program slicing: with the
proviso that we are interested in slicing non-terminating
programs.

Program slicing is a program analysis technique for

• Martin Ward is a Reader in Software Engineering at De Montfort
University, Leicester, UK

• Hussein Zedan is Professor and Dean of Research and Graduate Studies
at Applied Science University in Bahrain

extracting a relevant sub-program, or slice, from a larger
program. The slice must replicate part of the behaviour of
the original program: specifically, the values of the variables
of interest at the points of interest. A slice is not, in gen-
eral, required to preserve all the behaviour of the original
program.

Since the original development of program slicing by
Mark Weiser in 1979 [1,13], and its application as a debug-
ging technique [14], the concept has proved also to have
applications in testing, parallelisation, integration, software
safety, program understanding and software maintenance.
Surveys of slicing algorithms, applications, variations and
results can be found in a number of papers [15,16,17,18,19].

As we will see in Section 2, any slicing relation which is
behaviour preserving and allows deletion of irrelevant code
must satisfy the following properties:

1) It must be semantic equivalence where the original
program terminates, and;

2) Allow any program as a slice when the original
program does not terminate.

These two results are sufficient to completely characterise
the semantic part of the slicing relation. In [20] we describe
this relation as semi-refinement since it is weaker than seman-
tic equivalence but stronger than semantic refinement.

This would seem to completely solve the question of
which semantic relation to use for slicing, and indeed it
does: but only for slicing at the end of the program.

For slicing in the middle of a program, there is the
problem that the program may continue to execute and not
terminate after the slice point in which case the denotational
semantics of the program is abort and any slice is allowed.
For an interactive, non-terminating program, a denotational
semantics does not capture the interactions with the envi-
ronment. In particular, for programs which are intended to
run forever (such as embedded systems and operating sys-
tems), the semi-refinement relation of [20] cannot be used,
as it stands, to define slicing. In Section 4 we present a new

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 2

semantic relation for slicing which captures the interactions
of a program with the environment, and therefore allows a
program to interact before entering a non-terminating loop,
or in the middle of a non-terminating loop. We will show
that this relation formalises Weiser slicing not just for end-
slicing but also when slicing anywhere in the program. Note
that even with this new relation, a statement which does not
terminate and does not include a slice point can still be semi-
refined to any statement.

The new semantics is operational in the sense that it
defines the meaning of a program in terms of the finite or in-
finite sequence of states that the program passes through as
it operates. An operational semantics can be difficult to work
with in practical applications of reverse engineering because
the semantics of the original program is one sequence of
states, while the reverse engineered program may have a
shorter, or even completely different sequence of states.
With a denotational semantics, which defines the meaning
of a program in terms of the initial and final states, the
semantics of the reverse engineered program is identical to
the semantics of the original program. Proving this identity
is in general simpler than proving the more complicated
equivalence relation which holds for the operational seman-
tics.

We therefore also define a denotational semantics, which
is an extension of the standard denotational semantics
formed by constructing the denotational semantics of an
annotated program. The annotations are carefully designed
to capture the values of the variables of interest at each slice
point and ensure that the program terminates after a certain
number of passes through each slice point. This ensures that
the values of the variables of interest at each slice point
can reach the final state. Note that the annotated program
may still be non-terminating: loops which contain no slice
point are not forced to terminate after a certain number of
iterations.

This annotation method allows us to re-use the large
body of work in developing and proving the correctness
of program transformations which has been accumulated
over many years of research [2,3,4,5,6,7,8,9,10,11,12]. The
FermaT program transformation system [9] can also be used
for the analysis of interactive systems: as we will show in
Section 7.1.

In Section 5 we prove that the two semantics (opera-
tional and denotational) are equivalent in the sense that
either semantics can be derived from the other. Therefore,
they define the same slicing relation, and this relation fully
characterises “Weiser slicing”. This equivalence means that
slices can be derived using either semantics: depending on
which is most convenient for the problem at hand. It also
gives us confidence that the informal notion of a “slice” has
been correctly formalised: there are some subtle points in the
definition of the denotational semantic annotations which
were only uncovered during the development of the proof.

1.1 Outline of the Paper

In Section 2 we discuss Weiser’s definition of slicing and
show that his informal description is sufficient to fully
characterise the slicing relation.

In Section 3 we discuss the relationship between slicing
algorithms and the semantics for slicing and survey the
many attempts over the years to pin down the informal
concept of a program slice in a formal semantic definition.

In Section 4 we present the formal definitions for the
operational and denotational semantics and the correspond-
ing slicing relations. Readers who prefer to start with an
informal discussion of the semantics can skip to Section 6
and come back to this section. We extend the definition of
a slicing criterion to include multiple labels with a separate
set of variables of interest at each label. This extension is
necessary because a slice for several labels cannot necessar-
ily be constructed from the set of slices, one for each label:
see Section 6.4. We also present an extension of the usual
denotational semantics, formed by annotating the program,
which can be used for analysing non-terminating interactive
programs and for slicing non-terminating programs.

In Section 5 we prove the equivalence of slicing de-
fined by the operational semantics and slicing defined by
the denotational semantics on an annotated version of the
program.

In Section 6 we illustrate the semantics with a number
of example programs: in particular, the examples which
proved so problematic for previous attempts to define a
semantics for slicing. We also present a larger example of
an interactive non-terminating program, which is typical of
code translated from assembler, and show how the FermaT
Migration Engine (FME) can be used to analyse the inter-
active behaviour of this program by adding annotations
to convert it to a terminating program, transforming the
program and then removing the annotations.

Section 7 briefly discusses some practical applications of
semantic slicing.

Finally, Section 8 concludes.

2 Background

In this section we discuss Weiser’s definition of slicing and
deduce certain properties of the slicing relation which turn
out to be sufficient to fully characterise the relation.

2.1 Weiser Slice

Weiser defined a slice as a “reduced executable program
which preserves part of the behaviour of the original pro-
gram” [13]. The slicing relation is therefore a combination
of a syntactic relation and a semantic relation. The syntactic
relation expresses the fact that the slice is formed from the
original program by deleting statements. In [20] we for-
malise the concept of deleting statements in the “reduction
relation”. Program S2 is a reduction of S1, denoted S2 ⊑ S1

whenever S2 can be constructed from S1 by replacing state-
ments by skip statements. A skip statement has no effect
and is simply used as a “placeholder” to indicate where
a statement in S1 was deleted, and this makes it trivially
easy to match up components of S2 with the corresponding
components of S1. The semantic relation expresses the fact
that the slice preserves part of the behaviour of the original
program. In the literature, [19,20,21], slices which preserve

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 3

both relations are referred to as syntactic slices while slices
which preserve only the semantic relation are semantic slices.
One application of semantic slicing is in the analysis of
interactive systems where we are interested in the semantic
slices on the points where the program interacts with its
environment, another is in analysing the normal behaviour
of a program after “slicing away” error handling code (see
Section 7).

Weiser did not give a formal definition of the semantic
relation, but from his discussion of slicing certain prop-
erties can be deduced. In his proof of the non-existence
of an algorithm to find minimal slices, Weiser presented
the program fragment in Figure 1 and wrote: “Imagine

1 read(X)
2 if (X)

then
. . .
perform any function not involving X here
. . .

3 X := 1
4 else X := 2 endif
5 write(X)

Figure 1. Weiser’s Example Program

slicing on the value of X at line 5. An algorithm to find a
statement-minimal slice would include line 3 if and only if
the function before line 3 did halt. Thus such an algorithm
could determine if an arbitrary program could halt, which
is impossible” [13]. It is clear from this example that Weiser
intended for slicing to be applied to programs which may
fail to terminate on certain initial states, and that when
constructing a slice, it is valid to delete code which appears
after a non-terminating loop. Otherwise, deleting line 3 in
his example would never be valid: but his proof that there
does not exist an algorithm for finding a statement-minimal
slice hinges on the fact that line 3 can be deleted exactly
when the preceding code does not halt. Weiser also clearly
intended that any code which does not involve the variables
of interest can be deleted, regardless of whether or not that
code terminates.

A simple example of a statement which terminates and
does not involve X is the statement skip which terminates
immediately without affecting any variable. A simple ex-
ample of a statement which does not terminate and also
does not involve X is the loop while true do skip od. So,
according to Weiser, it is incorrect to delete the statement
labelled L2 in Figure 2 but it is allowable to delete the
statement labelled L4 in Figure 3.

read(X)
if X

then L1 : skip;
L2 : X := 1

else X := 2 fi;
write(X)

Figure 2. Weiser Slicing Example W1

read(X)
if X

then L3 : while true do skip od;
L4 : X := 1

else X := 2 fi;
write(X)

Figure 3. Weiser Slicing Example W2

In the rest of this section we will formalise the properties
of slicing implied by Weiser’s discussion and deduce cer-
tain constraints that they place on any proposed semantic
relation for it to be considered a formalisation of “Weiser
slicing”. We consider any slice which satisfies these proper-
ties to be a “valid slice” and any definition of slicing which
allows only valid slices, and all valid slices, to be a valid
definition.

Initially, our focus is on slicing at the end of the program,
later we will extend our scope to slicing in the middle of
potentially non-terminating programs. We start with some
definitions:

Definition 2.1. A statement S is x-preserving, if the value
of variable x is unchanged over any execution of S. A
statement is locally x-preserving if every assignment to
the variable x (if any) is x-preserving.

Any locally x-preserving statement is also x-preserving.
Also, any statement which does not assign to x is trivially
locally x-preserving, and therefore also x-preserving.

We formalise Weiser’s concept of preserving the values
of the variables of interest via the concept of a state:

Definition 2.2. A state is a function from a set of variables
(the domain or state space of the state) to a set of values.
So a state defines a value for each variable in the current
domain.

The state containing the variables x1, x2, . . . , xn having
values e1, e2, . . . , en respectively may be written:

{x1 7→ e1, x2 7→ e2, . . . , xn 7→ en}

Definition 2.3. Given a semantic equivalence relation ≈ and
a set X of variables, the restriction of ≈ to X, denoted ≈X

is the equivalence relation defined by taking all variables
apart from those in X out of all the final states and
comparing the result.

Note that if S1 ≈ S2 then for any X, we have S1 ≈X S2.
Also, if S1 ≈X S2 and X contains all the variables in S1 and
S2, then S1 ≈ S2.

Definition 2.4. A programming language and its semantics
is potentially divergent if, for any given set X of variables
of interest: there is a program abort(X) which is locally
x-preserving for all x ∈ X and which does not terminate
for any x ∈ X. The formal definition is that for any
program S:

S; abort(X) ≈X abort(X)

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 4

The definition simply states that a potentially divergent
language is any language in which it is possible to write
an infinite loop. Informally: since we are slicing on the end
of the program, if control flow never reaches the end of
the program then there is no behaviour which needs to be
preserved and therefore any statements in the program can
be deleted. In C the statement:

while (1) {

}

is a suitable implementation of abort(X) for any set X, and
in Java:

while (true) {

}

is suitable. In assembler language we can use a branch
instruction to create an infinite loop:

FOO B FOO

where the instruction branches unconditionally to itself.

In the lazy semantics of Danicic et al [22,23] we can
define abort(X) as

while true do x1 := x1; x2 := x2; . . . ; xn := xn od

This contains assignments for all the variables x1, . . . , xn

in X, but is still locally x-preserving for all of these vari-
ables, since each variable is assigned its current value. See
Section 3.2.3 for a discussion of this semantics.

Regular expressions, finite state machines and Hofs-
tadter’s BlooP language [24] are languages in which all
loops are guaranteed to terminate, so these are not poten-
tially divergent. (They are also not Turing-complete).

Let RX be a slicing relation, in the sense that P RX S if
and only if S is a valid slice of P when we are slicing on the
set X of variables at the end of the program.

As mentioned earlier Weiser’s definition of slicing can
be split into two parts:

1) A syntactic part: the slice S must be formed from the
program P by deleting statements, or equivalently
by replacing statements by skip statements. This
relation is denoted as S ⊑ P.

2) A semantic part: the slice S must preserve the values
of the variables of interest at the points of interest.

We are interested in the semantic part of the slicing
definition. Let 4X be a semantic relation on statements.
This is any partial order relation on the semantics of the
programs. We say that 4X partially defines RX if and only if:

P RX S ⇐⇒ S ⊑ P ∧ P 4X S

If P terminates for some initial state then P RX S implies
P ≈X S for that initial state, since the slice has to preserve
the values of all variables in X.

Definition 2.5. A truncating slicing relation is one which
allows deletion of a statement at the end of a program
whenever that statement does not modify any variable of
interest. Arguably, this is the simplest possible example

of deleting irrelevant code. A formal definition of the
property is the following: if P is of the form S1; S2 and
S2 is x-preserving, for all x ∈ X, then P RX S1

In order to preserve program behaviour, the semantic
slicing relation must be semantic equivalence (on the vari-
ables of interest) when the original program terminates. This
raises the question of what is allowed as a valid slice when
the original program does not terminate.

The next theorem shows that, in any potentially diver-
gent programming language, if the slicing relation allows
deletion of irrelevant code and we are slicing at the end
of the program then the semantic relation which partially
defines the slicing relation will allow any program as a valid
slice of a non-terminating program.

Theorem 2.6. Any semantic partial order relation 4X which
partially defines a truncating slicing relation RX on a
potentially divergent language and semantics, is such
that for all statements S:

abort(X) 4X S

Proof: Let RX be any truncating slicing relation on a po-
tentially divergent language. Let ≈X be the semantic
equivalence relation defined by the semantics on the
final values of the variables in X. Let S be any statement.

Consider the program S; abort(X). By truncation, S is a
valid slice of S; abort(X), so:

S; abort(X) RX S (1)

and therefore:
S; abort(X) 4X S (2)

By potential divergence, we have:

S; abort(X) ≈X abort(X) (3)

By substituting 3 into 2 we have:

abort(X) 4X S

So, S is a valid slice of abort(X). �

At first sight, this result may seem counter-intuitive: but
if control flow never reaches the slice point (which here is
the end of the program) then there is no behaviour which
the slice is required to preserve. If the slicing relation is
not required to preserve anything, then it is not restricted
(semantically) in any way.

Putting these results together, we see that any slicing
relation which is behaviour preserving and allows deletion
of irrelevant code must:

1) Be semantic equivalence where the original pro-
gram terminates, and;

2) Allow any program as a slice when the original pro-
gram does not terminate (the proof of Theorem 2.6
applies to any non-terminating statement, not just
abort(X)).

These two results are sufficient to completely characterise
the semantic part of the slicing relation. In [20] we describe
this relation as semi-refinement since it is weaker than seman-
tic equivalence but stronger than semantic refinement.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 5

3 Related Work

In this section we survey a number of different approaches
to the definition of a formal semantics for slicing and evalu-
ate whether they characterise Weiser slicing.

3.1 Slicing Algorithms

Weiser’s algorithm for constructing slices [1] makes use of
program dependencies. Horwitz and Reps PDG (Program
Dependence Graph) algorithm [25] is essentially Weiser’s
algorithm extended to handle interprocedural slicing. A
refinement of Weiser’s algorithm is presented in [26] which
takes into account the context in which each procedure call
occurs, and also attempts to determine which procedure
parameters are needed in the slice.

These algorithms for constructing slices preceded the
development of a theory for program slicing: although from
the beginning Weiser made a clear distinction between the
definition of a program slice and the particular slice con-
structed by a particular algorithm. Originally, it was never
suggested that “a slice” should be defined as simply “what
the slicing algorithm produces”. This distinction can be
clearly seen in Weiser’s paper [13] in which he proves
that there is no algorithm for finding minimal slices (see
Section 2.1 above).

More recently, algorithms for computing slices of reac-
tive programs [27] and finite state machines [28] have been
developed and these required handling programs which
may not terminate. This has led to new definitions and algo-
rithms for computing various forms of control dependence
in reactive systems which make extensive use of exception
handling [29,30].

Halder and Cortei [31] present an improved slicing algo-
rithm, based on the work of Mastroeni and Zanardini [32],
which uses semantics-based data dependencies to disregard
some false dependencies in order to give more precise slices.
They claim that a slice on a set of variables V can be formed
from the union of the slices on each variable in V . However,
De Lucia et al [33] present a simple counterexample to show
that in general, the union of two slices is not necessarily a
slice. According to Horwitz et al. [34] two program dependence
graph based slices of the same program can be seen as two
non-interfering versions of the program and therefore can be
safely integrated. However, it is not clear whether this result
still holds for Halder and Cortei’s improved dependence-
based slices. In Section 6.4 we present an example (Example
2) which shows that the union of two slices for the same
variable at two different slice points is not necessarily a slice
for the variable on bot slice points simultaneously. Therefore
for a fully comprehensive definition of slicing it is necessary
to define a slice in terms of a set of slice points with a set
of variables at each slice point (where each slice point may
include a different set of variables).

This work on extending or refining the definitions of con-
trol and data dependency, while relevant to the construction
of slicing algorithms is not relevant to the definition of a slice,
so will not be discussed further.

As we will see in Section 6.5.1, any definition of slicing
based on dependencies will, in certain cases, include state-

ments that have no effect on the variables of interest: so
any definition of slicing based on program dependency will
therefore be incomplete in the sense that it will exclude valid
slices.

3.2 Semantics for Program Slicing

There have been many attempts to define the semantic rela-
tionship involved in program slicing. Some researchers sim-
ply ignored the possibility that a program may not termi-
nate: for example, Venkatesh [35] wrote “As program slices
are considered meaningful for terminating computations
only, we will omit that technical detail (non-termination)
from the semantic function definitions in this paper.” This
approach is clearly insufficient when we wish to consider
slicing on interactive systems, such as operating systems
and embedded systems, which are designed to be non-
terminating. It is also insufficient for program analysis
where we are attempting to analyse an unknown program
and may not know in advance under what conditions the
program terminates.

Binkley et al [23] claim that “Weiser deliberately left un-
specified the behaviour of slices in states where the original
program fails to terminate”. Weiser may not have spelled
out explicitly the behaviour of a slice in those circumstances,
but, as discussed above, he did make it clear [13] that it is
valid for a slicing algorithm to delete code which appears
after a non-terminating loop. As we saw in Section 2.1, this
stipulation is sufficient to fully determine the behaviour
of end slices in states where the original program fails to
terminate. Weiser’s informal description of a slice therefore
implicitly contains enough information to fully determine
the semantic relation of slicing. So it turns out that Weiser
did not leave anything unspecified.

Note that the slicing relation is not necessarily a one-to-
one relation: there may be many different programs which
are valid slices of a given program. (In particular, any pro-
gram should be considered a valid slice of itself under any
slicing criterion). This is another reason why it is not suitable
to define a slice as the output of any particular slicing
algorithm. Even though there are only a finite number of
potential syntactic slices, no algorithm can produce a list
of all valid (and only valid) slices: since by picking the
smallest program in the list, we would have an algorithm
for a statement-minimal slice: which Weiser proved to be
impossible. Since there is no algorithm which can generate
all valid slices (and only valid slices), it is not possible to
define a valid slice as the output of any particular algorithm.
Also, when we are analysing interactive systems, semantic
slices (which do not need to be constructed from the original
program by deleting statements) may be more useful. There
are infinitely many different semantic slices for any given
program, so no algorithm can compute them all.

In the rest of this section we will examine and critique
the various attempts to define a semantics for program
slicing.

3.2.1 Reps and Yang’s Definition

Reps and Yang [36] define a slice in terms of data and
control dependencies. In effect they make the semantics of

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 6

a program be precisely the set of program dependencies, as
computed via a particular dependency-tracking algorithm.
For Weiser’s example in Figure 1, their definition implies
that line 3 must be in the slice, regardless of whether or
not the function before line 3 terminates: because their
dependency tracker lists line 3 as a dependency. So this
definition does not completely characterise Weiser slicing.
The main results of their paper are to prove that the PDG
(Program Dependency Graph) slice preserves the behaviour
of the original program on the variables of interest, and
that the slice terminates whenever the original program
terminates. They note that a slice may terminate when the
original program diverges: so PDG slices do not necessarily
preserve non-termination.

3.2.2 Binkley and Gallagher’s Definition

Binkley and Gallagher’s survey of program slicing [16]
defines a slice as follows:

Definition 3.1. For statement s and variable v, the slice S of
program P with respect to the slicing criterion 〈s; v〉 is
any executable program with the following properties:

1) S can be obtained by deleting zero or more state-
ments from P.

2) If P halts on input I , then the value of v at statement
s each time s is executed in P is the same in P and S.
If P fails to terminate normally s may execute more
times in S than in P, but P and S compute the same
values each time s is executed by P.

This definition preserves program behaviour and termina-
tion: at least for cases where the slicing point is at the end
of the program. It does not require slices to preserve non-
termination. In the case of end-slicing (slicing on the value of
a variable at the end of the program), the slice may terminate
and execute the statement at the end of the program exactly
once, when the original program did not terminate. More
generally, this definition allows a slice to delete code after
a non-terminating loop, and delete the loop itself if the
statement s is not part of the loop.

Note that the definition refers to a single variable at a
single slice point: as already discussed, we cannot compute
(or define) slices of more complex slicing criteria as the
union of simpler slices.

Considering only the semantic part of the definition, if
we are slicing at the end of the program then property (2)
allows any statement S as a valid slice of P in the case where
P does not terminate.

Also, for a programming language which includes non-
determinism, this definition does not allow any potential
slice to be valid for a terminating nondeterministic program!
Consider the program P:

if true → x := 1
⊓⊔ true → x := 2 fi;
y := x

where we are slicing on the value of x at the assignment to y.
According to Binkley and Gallagher’s definition, there are
no valid slices of P! Even P is not a valid slice of itself: since

the value of x at y := x may be different each time y := x is
executed. This might appear to be unimportant in practice
(since most executable programs are also deterministic), but
in the context of program analysis and reverse engineering it
is quite common to “abstract away” some implementation
details and end up with a nondeterministic abstraction of
the original program. If one wishes to carry out further
analysis on this program via slicing, then it is essential that
the definition of slicing, and the algorithms implementing
the definition, are able to cope with nondeterminism. Non-
determinism is discussed by Dijkstra [37,38] and by many
other researchers.

Fortunately, the definition can be modified to work with
nondeterministic programs. Instead of talking about “the
value of v at statement s each time s is executed in P” we
need to talk about the set of all possible sequences of values
that can occur in different nondeterministic executions. We
also wish to extend the definition of a slice point from a
single variable at a single point in the program to a set of
points of interest with a separate set of variables of interest
at each point of interest.

3.2.3 Lazy Semantics

Cartwright and Felleisen [39] define a “lazy” semantics for
program slicing in which some variables are mapped to the
special value ⊥, representing non-termination, while other
variables have ordinary values. The value of a variable is
defined as ⊥ if it is assigned inside an infinite loop, however,
a program might assign the variable a new value “after” the
infinite loop which allows the variable to “recover” from
being ⊥.

A slice on a set of variables is any program, formed from
the original by deleting statements, which is equivalent to
the original program on the variables of interest under the
lazy semantics.

Under Cartwright and Felleisen’s semantics, the pro-
gram:

while true do

x := x+ 1;
y := y + 1 od;

x := 1;
z := 1

gives x the final value 1, while the value of y is undefined.
For the while loop alone, the value of x is undefined: so the
program can “recover” from the non-termination caused by
the loop if a variable is subsequently assigned a defined
value. When slicing on the final value of z, the infinite loop
and assignment to x can be deleted since they have no effect
on the final value of z. But the assignment to z itself cannot
be deleted: even though in practice this statement can never
be executed: this contradicts Weiser’s concept of slicing as
discussed above in Section 2.1. So the lazy semantics does
not fully characterise Weiser slicing.

Among some researchers (see the next two subsections)
there appears to be a reluctance to allow a slice to delete
code which is included by the data dependency algorithm:
for example, code which appears after a non-terminating
loop. This may be due to a confusion between the definition

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 7

of a slice and the set of slices produced by a particular algo-
rithm, such as the standard dependency algorithm. Because
the dependency algorithm includes the assignment to z in
the slice, some researchers believe that the semantics ought
to also require that the assignment be included. (Weiser
did not originate this confusion: as discussed in Section 2.1,
he explicitly allowed deleting code after a non-terminating
loop.)

Including more statements than strictly necessary in a
slice is a minor defect: after all, no algorithm can gener-
ate minimal slices for every program, so every algorithm
will include “unnecessary” statements under some circum-
stances. (Although, this does not absolve a definition of slic-
ing from including extra statements!) However, Cartwright
and Felleisen’s semantics has a more serious problem: which
is illustrated by the programs in Figure 4. Program P2 is

(a) Program P1

while y > 0 do

y := y + 1;
y := y − 2 od;

x := 1

(b) Program P2

while y > 0 do

y := y + 1 od;
x := 1

Figure 4. Lazy semantics slicing example

constructed from P1 by deleting statements, and according
to the lazy semantics, the two programs are semantically
equivalent. So Cartwright and Felleisen’s definition of slic-
ing allows P2 as a valid slice of P1: even though P2 does
not terminate when y > 0 initially, but P1 terminates for all
initial states.

For program W2 in Figure 3, Cartwright and Felleisen’s
semantics does not allow statement L4 to be deleted, so this
semantics does not fully characterise Weiser slicing.

They refer to their work as “the semantics of program
dependence” [39]: and it is the case that the traditional
program dependence algorithm will include statement L4

in Figure 3 as a dependency of the value of X in the
write statement. However, their semantics does not fully
characterise program dependency: consider the example
in Figure 5. With this example, their semantics does allow

read(X);
if false then L5 : X := 1

else L6 : X := 2 fi;
write(X)

Figure 5. Program Dependency Example

deletion of statement L5, even though the traditional pro-
gram dependency algorithm includes both L5 and L6 as
dependencies. So their semantics is only an approximation
of the semantics of program dependency.

3.2.4 Transfinite Semantics

Giacobazzi and Mastroeni [40] define an extended com-
positional semantics which is able to observe transfinite
computation: that is, computations that may occur after a

given number of infinite loops. They claim that “this gen-
eralization is necessary to deal with program manipulation
techniques modifying the termination status of programs,
such as program slicing.” Transfinite semantics is defined in
terms of state sequences whose length can be any finite or
infinite ordinal. For example, in the program:

while true do

w := w + 1;
while y 6= z do

y := y − 1 od od;
x := 1

we have an infinite concatenation of finite or infinite traces.

Nestra [41] claims that dataflow slices are “not correct
w.r.t. standard semantics” because infinite loops may be
sliced away. He shows that in a transfinite semantics there
is no need to consider traces resulting from the execution of
every statement in an infinite loop: only the states at the
bottom of the loop body are needed. Figure 6 illustrates
the difference. In Giacobazzi and Mastroeni’s semantics, the

(a) Program P3

while true do

x := 1;
x := 2 od

(b) Program P4

while true do

x := 2 od

Figure 6. Transfinite semantics examples

final value of x is undefined in p3 but 2 in P4. In Nestra’s
semantics it is 2 in both programs.

However, both of these transfinite semantics allow the
non-terminating program P2 in Figure 4 as a valid slice of
the terminating program P1.

Neither of these transfinite semantics allow statement L4

in Figure 3 to be deleted, so they do not fully characterise
Weiser slicing. Also, both of these transfinite semantics
allow statement L5 in Figure 5 to be deleted, so they do
not fully characterise program dependency.

3.2.5 Danicic’s Non-Standard Semantics

Danicic et al [42] showed that none of the lazy or transfinite
semantics in the previous subsections satisfies the replace-
ment property. This property states that any component of
a program can be replaced by a semantically equivalent
component and the resulting program will be semantically
equivalent to the original. The problem is illustrated in
Figure 7. In P6 the statement y := y has been replaced by the
semantically equivalent statement skip. But P5 and P6 are
not equivalent under either Cartwright and Felleisen’s lazy
semantics, Giacobazzi and Mastroeni’s transfinite semantics,
or Nestra’s transfinite semantics. For P5 the value of y is
undefined under all three semantics, but for P6 the value of
y is 1.

Danicic et al [42] solved this particular problem with a
modified lazy semantics which does satisfy the replacement
property. This approach does not, however, cater for slicing
at arbitrary points in the middle of a program. This seman-
tics also suffers from the problem that a non-terminating

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 8

(a) Program P5

x := 1;
y := 1;
while true do

x := −x od;
if x > 0

then y := y
else x := −x fi

(b) Program P6

x := 1;
y := 1;
while true do

x := −x od;
if x > 0

then skip

else x := −x fi

Figure 7. The Replacement Property

program is allowed as a valid slice of a terminating pro-
gram: for example, P2 in Figure 4 is a valid slice of P1

in the semantics of Danicic et al [42]: this is because both
programs give x the value 1 in the final state. The fact that y
has the value ⊥ in P2 for some initial states in which y has
a terminating value in P1 does not have any impact on the
slice.

Danicic’s semantics does not allow deletion of statement
L4 in Figure 3, so it also does not fully characterise Weiser
slicing. It allows statement L5 in Figure 5 to be deleted, so it
also does not fully characterise program dependency.

A general problem with all forms of lazy and transfi-
nite semantics is that they do not correspond with how
a program is actually executed on a computer. In these
semantic models, a program somehow continues to execute
after an infinite number of iterations of a loop (or even
after an infinite number of executions of infinite loops!). As
discussed above, this means that the slicing definition will
require that a slice preserves parts of the program which
are not actually reachable in any execution. The problem
is even more obvious when we examine the control flow
graphs of the programs. Nodes in the flowgraph which are
only reached via the “no” exit from a decision node whose
test is the predicate true can be deleted if the decision node
resulted from an if statement, but cannot be deleted if the
decision node resulted from a while loop! For example, in
Figure 8, where we are slicing on the final value of y, the
statement x := 1 can be deleted from P7 but not from P8,
even though neither statement can ever be executed. In both
cases the statement appears in the “no” branch of a test of
“true”.

3.2.6 Slicing Based on Semantic Equivalence

Kamkar [43] defined slicing according to strict semantic
equivalence. In this context, a strict semantic equivalence
is one which distinguishes between terminating and non-
terminating code (in contrast to lazy semantics, for exam-
ple).

This form of slicing therefore preserves the behaviour of
the program and also preserves both termination and non-
termination of the original program. This will lead to larger
slices than necessary in some cases. For example, a loop
which has no effect on the variables of interest will have
to be included in the slice if there is the possibility that the
loop may not terminate: since this non-termination has to
be preserved. As a “knock-on” effect, code which affects

(a) Program P7

if true then skip else x := 1 fi;
y := x

trueyes no

skip x := 1

Start

y := x

(b) Program P8

while true do skip od; x := 1;
y := x

trueyes no

skip x := 1

Start

y := x

Figure 8. Unreachable Code

variables referenced in the loop also has to be included in
the slice, even if this code always terminates and has no
effect on the variables of interest.

This semantics does, at least, allow code after a non-
terminating loop to be deleted, unlike the various forms
of transfinite and lazy semantics, and does not allow a
non-terminating program as a valid slice of a terminating
program. For the program in Figure 3, based on Weiser’s
example, Kamkar’s semantics allows statement L4 to be
deleted, but does not allow statement L3 to be deleted. So
this semantics does not fully characterise Weiser slicing.

Harman et al [23,44,45,46,47] present what at first sight
appears to be a very general framework which defines a
“program slice” as a combination of two relations:

1) A syntactic partial order relation (typically specified
as a computable relation); and

2) A semantic equivalence relation.

They define an amorphous slice as a slice which only pre-

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 9

serves the semantic equivalence relation.

The definition looks generic enough to include many
useful slicing relations: but in practice, insisting that the
semantic relation be an equivalence is too severe a restriction.
In [48] we prove that given very reasonable property of the
programming language and a very reasonable property of
slicing, the only equivalence relation which defines a slicing
relation is universal equivalence. This is the relation which
defines every program as “equivalent” to every other pro-
gram: so slices defined in terms of this equivalence relation
do not preserve the behaviour of the original program on
the variables of interest.

To prove this result, we use the statement abort(X) dis-
cussed above (Section 2.1). In the lazy semantics of Danicic
et al [22,23] we can define abort(X) as

while true do x1 := x1; x2 := x2; . . . ; xn := xn od

which contains assignments for all the variables x1, . . . , xn

in X, but is still locally x-preserving for all of these vari-
ables, since each variable is assigned its current value.

Definition 3.2. A semantic equivalence relation ≈ partially
defines a slicing relation R if whenever S is a slice of
P, according to R, on variable set X, then P and S are
equivalent according to ≈X , ie:

P RX S ⇒ P ≈X S

Note that programs may be equivalent which are not slices
of each other, but that every program is equivalent to all its
slices (on the restriction of the equivalence relation to X).

Definition 3.3. The universal equivalence relation is the seman-

tic equivalence relation
U
≈ for which any two programs

are equivalent, i.e. for all statements S1 and S2:

S1
U
≈ S2

Theorem 3.4. Any equivalence relation ≈ which partially
defines a truncating slicing relation R on a potentially di-
vergent language and semantics, is the universal equiv-
alence relation.

Proof: Let R be any truncating slicing relation on a po-
tentially divergent language. Let ≈ be any semantic
equivalence relation which partially defines R. Let S be
any statement and X be any set of variables. Let RX be
the subset of R when we are slicing on X at the end of
the program.

Consider the program S; abort(X).

By the truncation property, S is a valid slice of the
sequence S; abort(X), i.e:

S; abort(X) RX S

Since ≈ partially defines R, we have:

abort(X); S ≈X S

By potential divergence we have:

S; abort(X) ≈X abort(X)

Therefore, by the transitivity of ≈X :

S ≈X abort(X)

But this holds for any statement S. So for any statements
S1 and S2:

S1 ≈X abort(X) and S2 ≈X abort(X)

So by the symmetry and transitivity of ≈:

S1 ≈X S2

But this is true for every X: in particular, for the set
which contains all variables in S1 and S2. So:

S1 ≈ S2

But this is true for all statements S1 and S2, so ≈ is
therefore the universal equivalence relation. �

This theorem shows that if we are working in a language
in which it is possible to write an infinite loop, and we
want to allow slices to delete irrelevant code at the end of a
program, then the only equivalence relation we can use to
define slices is universal equivalence. Therefore, if we also
want our slices to preserve the behaviour of the program on
the variables of interest, then there is no equivalence relation
which defines the slicing relation!

In terms of Figures 2 and 3, the theorem shows that any
semantic equivalence relation which allows statement L4 in
Figure 3 to be deleted will also allow statement L2 in Figure 2
to be deleted: and so will not preserve the value of X at
the statement write(X). So there is no semantic equivalence
relation which fully characterises Weiser slicing.

It is clear from this discussion that the semantic relation
for slicing cannot be an equivalence relation, and we need to
look at more general relations.

After reading the proof, this result may appear to be an
obvious one which we have belaboured more than neces-
sary. However, since the concept of an “amorphous slice”
(which is a slice defined in terms of a semantic equivalence
relation) has appeared in many journal and conference
papers over a period of more than ten years [23,44,45,46,
47], it seemed worthwhile to put the issue to rest once and
for all.

3.2.7 Slicing Based on Refinement

As already mentioned, Weiser’s informal definition of a
program slice (see Section 2.1) refers to a syntactic rela-
tion and a semantic relation. In [8] Ward defined slicing
using reduction as the syntactic relation and refinement as
the semantic relation: where the refinement is defined on a
projection of the semantics of the program to the variables
of interest.

Using refinement as the semantic relation will allow
irrelevant code to be deleted, regardless of whether or not
the deleted code terminates. Termination of the original
program is preserved, but non-termination does not have
to be preserved. This semantics allows statements L3 and
L4 in example W2 (Figure 3) to be deleted and characterises
Weiser slicing for deterministic programs.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 10

A potential problem with this definition of slicing is
that it is not behaviour preserving for nondeterministic
programs. For example the nondeterministic program:

x := 1;
if true → x := 1
⊓⊔ true → x := 2 fi

always terminates and assigns x the value 1 or 2 nondeter-
ministically. A reduction of this program, which is also a
refinement, is:

x := 1

which always assigns the value 1. A programmer cannot
analyse a slice of the program and then deduce facts about
the value assigned to a variable in the original program
(assuming that the original program terminates). In the
example above, the slice always sets x to the value 1, but
the original program may set x to the value 2.

This problem was recognised and fixed in a later for-
malisation of slicing by using the semantic relation of semi-
refinement [20], see the next section.

3.2.8 Slicing Based on Semi-Refinement

To fix the problems caused by defining slicing in terms
of refinement, we invented a new semantic relation: semi-
refinement [10,20,49]. Program S2 is a semi-refinement of
S1, written S1 4 S2, provided S1 and S2 are semantically
equivalent whenever S1 terminates. To be precise:

1) If S1 terminates on some initial state, then S2 also
terminates, and the set of possible final states for S2

(on this initial state) is identical to the set of possible
final states for S1;

2) If S1 does not terminate, then S2 can do anything at
all.

In terms of a denotational semantics which maps each initial
state to the set of possible final states, if f1 is the semantics
for S1 and f2 is the semantics for S2, then S1 4 S2 iff:

∀s. (⊥ ∈ f1(s) ∨ f2(s) = f1(s))

where ⊥ is the special state denoting non-termination.

Semi-refinement can equivalently be defined in terms of
weakest preconditions (see [20]):

For any program S and condition R on the final state, the
weakest precondition WP(S,R) is the weakest condition on
the initial state such that if S is started in a state satisfying
this condition, then it is guaranteed to terminate in a state
satisfying R. Using weakest preconditions:

S1 4 S2 iff S1 ≈ {WP(S1, true)}; S2

Here, the statement {WP(S1, true)} is an assertion. This is
an executable statement, not an annotation. In general the
assertion {B} is equivalent to skip when the condition B is
true, and abort when B is false. So the assertion statement
{B} is in effect a conditional abort:

if B then skip else abort fi

If S1 does not terminate, then WP(S1, true) is false and
the assertion {WP(S1, true)} is abort. In this case, both sides

of the equivalence are abort, and the equivalence is satis-
fied, whatever the semantics of S2. If S1 does terminate, then
WP(S1, true) is true and the assertion is a skip statement.
In this case, we must have S1 semantically equivalent to S2.

In order to preserve program behaviour, the semantic
slicing relation must be semantic equivalence (on the vari-
ables of interest) when the original program terminates. As
discussed above, when we are slicing on the end of the pro-
gram, the slicing relation must allow any program as a valid
slice of a non-terminating program. The semi-refinement re-
lation therefore steers a path between the Scylla of semantic
equivalence and the Charybdis of unrestricted refinement.

In this paper we extend the concept of semi-refinement
in order to handle slicing in the middle of potentially
non-terminating nondeterministic programs. This extension
allows the method to be used to analyse the interaction
behaviour of non-terminating embedded systems.

3.2.9 Finite Trajectory Semantics

The question of defining the meaning of a program slice for
non-terminating programs led to the development of a finite
trajectory semantics by Barraclough et al [50].

The finite trajectory semantics is defined in terms of a
small, deterministic programming language which includes
labels on assignments, skip statements and tests. The pro-
gram statements are (using our notation):

• L : skip

• L : x := e
• S1; S2

• if L : B then S1 else S2 fi

• while L : B do S1 od

where L is a label, x is a variable, e is an expression, B is a
boolean expression and S1 and S2 are statements. Note that
both statements and predicates can be labelled. A quotient
of a program is obtained by replacing sub-programs in the
original program by skip statements: so a quotient is what
we have previously defined as a reduction. (See Section 3.2.7
and [20]).

The overriding operator on states is defined as follows.
For any states s1 and s2, the state (s1 ⊛ s2) is defined on a
variable x as:

(s1 ⊛ s2)(x) =DF

{

s2(x) if x is in the domain of s2

s1(x) otherwise

Given an integer n and statement S, the trajectory semantics
~Tn[[S]] maps each initial state to a finite sequence of labelled
states, defined as follows:

~Tn[[L : skip]](s) =DF 〈〈L, s〉〉

~Tn[[L : x := e]](s) =DF 〈〈L, s⊛ {x 7→ E [[e]](s)}〉〉

~Tn[[S1; S2]](s) =DF
~Tn[[S1]](s) ++ ~Tn[[S2]](s

′)

where s′ is the state in the last element of ~Tn[[S1]](s) and ++
denotes concatenation of sequences

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 11

~Tn[[if L : B then S1 else S2 fi]](s)

=DF

{

〈〈L, s〉〉 ++ ~Tn[[S1]](s) if E [[B]](s)

〈〈L, s〉〉 ++ ~Tn[[S2]](s) otherwise

~Tn[[while L : B do S od]](s)

=DF
~Tn[[Wn(L,B,S)]](s)

where Wn(L,B,S) is the nth unfolding of the while loop,
defined as follows:

W0(L,B,S) =DF if L : B then skip else skip fi

Wn+1(L,B,S) =DF if L : B then S; Wn(L,B,S)
else skip fi

There are two important points to note about the finite
trajectory semantics of the while loop, compared to our WSL
(Wide Spectrum Language) while loop (see [2,9]):

1) There is no equivalent to the WSL abort statement,
and consequently, no equivalent to the WSL asser-
tion statement;

2) The while loop is defined by unfolding, starting
with if L : B then skip else skip fi as the zeroth
unfolding. In our WSL semantics the while loop is
also defined by unfolding, but starting with abort.
Starting with abort ensures that each higher trun-
cation is a semi-refinement of all the earlier trunca-
tions: there is no such simple semantic relationship
between the different unfoldings of a loop in the
trajectory semantics.

In the trajectory semantics all trajectories are terminating
and finite: there are no non-terminating primitive state-
ments and all loops are forced to terminate after n iterations
(with control passing to the statement after the loop). A non-
terminating program is indicated by the trajectory lengths
increasing without bounds as n increases.

Slicing is defined in terms of an equivalence relation on
finite trajectories: finite trajectory backward slice equivalence,
denoted ~S(V,L) where V is a set of variables of interest
and L is a label representing the program point of interest.
Informally, programs P and Q are finite trajectory backward
slice equivalent, with respect to slicing criterion (V,L), if for
each initial state s there exists a sufficiently large integer ns

such that for all n > ns the traces ~Tn[[P]] and ~Tn[[Q]] contain
the same number of states labelled L and for each of these
states, the variables in V have the same values.

The formal definition makes use of the projection of a
sequence of labelled states, Proj(V,L) where:

Definition 3.5. The projection operator Proj(V,L) is defined:

Proj(V,L)(λ1 ++ λ2) =DF Proj(V,L)(λ1) ++ Proj(V,L)(λ2)

Proj(V,L)(〈L, s〉) =DF 〈〈L, s ↓ V 〉〉

Proj(V,L)(〈L
′, s〉) =DF 〈〉 if L′ 6= L

This operator extracts the states which have the required
label and restricts the domain of each extracted state to the
variables of interest.

Since ~S(V,L) is a semantic equivalence relation it might
be expected to suffer from some of the problems that have

plagued all other attempts to define slicing in terms of
semantic equivalence. Indeed, Theorem 3.4 shows that every
semantic equivalence relation will suffer from some problem
or other.

Consider the program

while L1 : true do L2 : skip od; L : x := e

where we are slicing on the value of x at label L. Every finite
trajectory consists of a finite sequence of states labelled with
L1 or L2 followed by a state labelled L. So every projection
on ({x}, L) includes the state labelled L: and therefore the
corresponding assignment statement must be included in
every slice (even though this statement can never actually
be reached in any execution of the program). Similarly, in
Figure 3 the trajectory semantics disallows deleting state-
ment L4, even though it appears after an infinite loop. So
the trajectory semantics does not fully characterise Weiser
slicing.

The authors of [50] criticise the lazy and transfinite
semantics because: “They are conceptual models that re-
quires [sic] the reader, for example, to imagine programs
continuing to execute after executing infinite loops.” As
we have just seen, their semantics is open to exactly the
same criticism! By forcing every loop to terminate after n
iterations, with control flow continuing after the loop, any
code appearing after one or more infinite loops will have an
effect on the semantics.

However, there is an even more serious problem which
is illustrated in Figure 9. Program P8 is obtained from P7 by

(a) Program P7

while L1 : y > 0 do

L2 : y := y + 1;
L3 : y := y − 2 od;

L : x := 1

(b) Program P8

while L1 : y > 0 do

L2 : y := y + 1 od;
L : x := 1

Figure 9. Trajectory semantics slicing example

deleting the statement labelled L3. The finite trajectories of
P7 and P8 when projected with respect to slicing criterion
({x}, L) are identical for all n: both projections contain a
single labelled state in which x has the value 1.

So according to the finite trajectory semantics, P8 is a
valid slice of P7. But, as we saw with Figure 4, P8 does
not terminate when y > 0 initially, while P7 terminates
for all initial states. Once again, we have a non-terminating
program defined as a valid slice of a terminating program.

4 An Improved Semantics for Slicing

In this section we give the formal definitions of the lan-
guage, the operational and denotational semantics, and our
slicing relation which aims to capture Weiser’s concept of
slicing for both terminating and non-terminating programs,
and for deterministic and nondeterministic programs.

4.1 Motivation

To handle slicing in the middle of a potentially non-
terminating program we need a semantics that is operational

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 12

in the sense that the semantics records the sequence of states
as the program executes, not just the final state. To handle
nondeterminism, the semantic function maps each initial
state to the set of possible finite or infinite sequences of
states which can result from execution on the given initial
state. Such a sequence of states is called a history. To apply
program slicing to a history we ensure that each state is
labelled, so that we can determine the states which are
relevant to the points of interest. To allow simultaneous
slicing at multiple points in the program we define a slicing
criterion as a function from labels to sets of variables. For
each label (point of interest) in the domain of the slicing
criterion, the corresponding set of variables is the set of vari-
ables of interest at that point. Our projection function takes a
history and a slicing criterion and removes unwanted states
from the history and removes unwanted variables from the
remaining states. An important feature of the projection
function is that if an infinite sequence of states is removed
from the history, then the special state ⊥ is appended to the
result to indicate that the resulting finite sequence of states
still represents a non-terminating computation. Note that
⊥ is unlabelled and can only appear as the final element
in a history. The state ⊥ can appear in the semantics of
the assertion statement and in the result of a projection.
We define abort as the assertion {false} and skip as the
assertion {true}.

Our projection function is therefore significantly dif-
ferent to the one presented in Barraclough et al [50] and
discussed in Section 3.2.9.

The semantic relation we use to define slicing is a natural
extension of semi-refinement applied to histories. An infi-
nite or finite terminating history can only be semi-refined
by itself, while a finite non-terminating history (i.e. one
which ends in ⊥) can be semi-refined by any extension of the
history: this agrees with the original history up to the final
element (the ⊥) and has ⊥ replaced by any other history.
For example, the history 〈〈L1, s1〉, 〈L2, s2〉,⊥〉 can be semi-
refined to 〈〈L1, s1〉, 〈L2, s2〉, 〈L3, s3〉〉. This allows any non-
terminating loop which does not include any slice points
(and which therefore is projected to 〈⊥〉) to be sliced to
any other statement. (Similarly, abort can be sliced to any
other statement.) To see why this is necessary, consider the
program:

while true do L : skip od; S

where S is any statement. The semantics of this program on
initial state s is the infinite sequence 〈〈L, s〉, 〈L, s〉, . . . 〉. If L
is not in the slicing criterion, then this history is projected
to 〈⊥〉. Since the loop does not affect any variables used by
S, it can be sliced away, and the result is the semantics of
S: which can be anything, since S is an arbitrary statement.
This ensures that semi-refinement on the operational seman-
tics, together with the syntactic reduction relation, provides
a complete and correct formalisation of Weiser slicing which
also applies to nondeterministic programs and potentially
non-terminating interactive programs.

This operational semantics is intuitively clear, but dif-
ficult to work with in practical applications. Therefore we
have also developed a method for annotating a program
in such a way as to “capture” the values of the variables

of interest at the points of interest and ensure that these
values can potentially reach the end of the program and
therefore appear in the final state. The denotational seman-
tics of this annotated program can then be used to define
slicing on nondeterministic and potentially non-terminating
programs. To ensure that the information can reach the end
of the program, we enforce termination on loops which
contain slice points after the slice point has been passed a
certain number of times. Note that after this enforced termi-
nation the whole program terminates immediately: control
does not pass to any statements following the loop. This is
necessary to ensure that statements after a non-terminating
loop have no effect on the final state and can be deleted: for
example the statement labelled L4 in Figure 3. Even though
termination is enforced, there is still a significant difference
between an annotated non-terminating loop and an anno-
tated terminating loop: the former cannot pass control to
the next statement as the latter does.

In Section 5 we prove that the slicing relation defined by
the operational semantics is identical to the slicing relation
defined by the denotational semantics applied to an anno-
tated program. Some subtle issues with the precise modifi-
cation and annotation needed for the denotational semantic
approach to be operational semantic approach were only
uncovered in the process of proving the equivalence of the
two approaches. So this task is decidedly non-trivial and the
equivalence proof is a very welcome reassurance.

This proof means that we can apply all the results of the
last 25 years of research and development in program trans-
formation theory (which is based on the denotational se-
mantics) to program slicing and analysis of potentially non-
terminating and nondeterministic interactive programs.

Note that this proof differs significantly from the stan-
dard proof of equivalence of operational and denotational
semantics which proves that, for terminating programs, the
final state or set of states generated by the operational
semantics is equal to the final state or set of states in the
denotational semantics: in other words, operational seman-
tics can simulate denotational semantics for terminating
programs by ignoring the intermediate states. Our proof
shows that a modified denotational semantics can simulate
operational semantics, including all intermediate states, or
just certain required intermediate states, for both terminat-
ing and non-terminating programs.

4.2 The Language

The language we are using is based on the Wide Spectrum
Language WSL [9] and consists of two primitive statements
and four compound statements.

4.2.1 Primitive Statements

The primitive statements are restricted to assertions and
simple assignments. For any formula Q, variable x and
expression e the following are primitive statements:

1) Assertion: {Q}
2) Assignment: x := e

Note that an assertion is an executable statement, rather
than simply an annotation. If the condition Q is true, then

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 13

the assertion does nothing, otherwise it aborts (does not
terminate). Any primitive statement can be annotated with a
label, for example: L1 : x := 2; L2 : {x > 0}. Any unlabelled
program is assumed to be annotated with the special label
L0, if necessary.

As usual, we define the primitive statements skip and
abort as assertions:

skip =DF {true} and abort =DF {false}

4.2.2 Compound Statements

The compound statements are as follows: for any statements
S1 and S2, and any formula B, the following are also
statements:

1) Sequence: S1; S2

2) Deterministic Choice: if B then S1 else S2 fi

3) Nondeterministic Choice: (S1 ⊓ S2)
4) While Loop: while B do S od

Using the above constructs, we can define all the con-
structs in Dijkstra’s “guarded command language” [37,38].
Similarly, Dijkstra’s guarded commands can be used to de-
fine this subset of WSL. For example, the assertion {B} can
be defined as a conditional abort in the guarded command
language:

if B → skip ⊓⊔ ¬B → abort fi

Conversely, Dijkstra’s conditional statement:

if B1 → S1 ⊓⊔ B2 → S2 fi

can be defined as a nested if statement:

if B1 ∧ ¬B2

then S1

else if ¬B1 ∧ B2

then S2

else if B1 ∧ B2 then (S1 ⊓ S2)
else {false} fi fi fi

So our language, while simpler to Dijkstra’s guarded com-
mand language, is notationally equivalent. The proofs in
Section 5 could easily be extended to Dijkstra’s language.

4.3 States

A state is a collection of variables (the domain or state space)
each of which is assigned a value from a given set H of
values. A state is therefore modelled as a function from the
domain to the set of values. For example, the state {x 7→
0, y 7→ 1} has domain {x, y} and assigns x the value 0 and
y the value 1. The special state, denoted ⊥, does not assign
values to any variables but indicates non-termination or an
error condition. States other than ⊥ are proper states. The set
of all proper states on domain V and value set H is therefore
the set of functions from V to H, which is denoted HV . The
set of all states on V is: DH(V) =DF {⊥} ∪HV .

A state predicate is a set of proper states. For example, if
H is the set {0, 1} then the state predicate {{x 7→ 0, y 7→
0}, {x 7→ 1, y 7→ 1}} contains all the states, and only
those states, where x = y. The set of all state predicates
is EH(V) =DF

℘(HV). Note that there is no state predicate

which contains the state ⊥. This state does not satisfy any
predicate: not even the predicate true (which is satisfied by
every state other than ⊥).

The domain of a state, or other function, is denoted
Dom(s). The state which is a subset of s with the domain
restricted to the variables in X is denoted s ↓ X. For
example, if s is the state {x 7→ 0, y 7→ 1} then s ↓ {x} is
the state {x 7→ 0}.

The overriding operator on states s1 ⊛ s2 returns a state
whose domain is Dom(s1)∪Dom(s2). For each variable x in
the domain:

(s1 ⊛ s2)(x) =DF

{

s2(x) if x is in the domain of s2

s1(x) otherwise

For example the state s ⊛ {x 7→ e} is s with x added to the
domain (if necessary) and the value of x set to e. So we have:

s⊛ {x 7→ e} = (s \ {x 7→ s(x)}) ∪ {x 7→ e}

More generally, we have the following identity:

s1 ⊛ s2 = (s1 ↓ (Dom(s1) \ Dom(s2))) ∪ s2

4.4 Interpretations

The formulae and expressions in WSL are taken from a first
order logic language L. If we fix on a particular set of values,
and choose an interpretation of the symbols of the base
logic L in terms of the set of values, then we can interpret
formulae in L as state predicates and statements of WSL as
state transformations. To be precise:

Definition 4.1. A structure M for L is a set H of values
together with functions that map the constant symbols,
function symbols and relation symbols of L to elements,
functions and relations on H. Given a structure M for
L and a set V of variables, we can define an interpreta-
tion of each formula B as a state predicate intM (B, V),
consisting of the states which satisfy the formula. We
can also consider the interpretation intM (e, V) of each
expression e as a function which maps a state to a value.
For example:

intM (true, V) = HV

intM (false, V) = ∅

For each s ∈ HV :

intM (x+ y, V)(s) = s(x) + s(y)

For example, if H = {0, 1} and V = {x, y}, then the state
predicate intM (x = y, V) is the set of states in which the
value given to x equals the value given to y, ie:

intM (x = y, V) = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1}}

Definition 4.2. Given a set of sentences (formulae with no
free variables), ∆, a structure M is a model for ∆ if and
only if intM (Q, V) = HV for every Q ∈ ∆.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 14

4.5 Operational Semantics

A labelled state is a pair 〈L, s〉 consisting of a label L and
a proper state s. For any labelled state: 〈L, s〉[1] = L and
〈L, s〉[2] = s. The labels are taken from a set of labels, which
is denoted L.

A labelled program is a WSL program in which some
primitive statements have labels. For example:

if y = 3 then L1 : x := 3; L2 : y := 4 else L3 : skip fi

The labels are used to refer to components of a program, not
as targets of goto statements, so there is usually no need
for labels to be unique. A set of primitive statements in a
program can be indicated either by giving them all the same
label, or by referring to a set of labels. The special label
L0 is assumed to be the label of any unlabelled primitive
statement.

A state history, or just history for short, is either a finite
sequence of labelled proper states, optionally ending in ⊥
(without a label), or an infinite sequence of labelled proper
states. So a state history will take one of the three forms:

〈〈L1, s1〉, 〈L2, s2〉, . . . , 〈Ln, sn〉〉 or

〈〈L1, s1〉, 〈L2, s2〉, . . . , 〈Ln, sn〉,⊥〉 or

〈〈L1, s1〉, 〈L2, s2〉, . . . 〉

Note that ⊥ can only appear as the last element in the
history, and does not have a label.

A terminating history is any finite history which ends
in a labelled proper state. Otherwise, the history is non-
terminating (in which case it is either infinite or ends in ⊥).

The length of a history ℓ(h) is the number of elements in
the sequence. If h is infinite then ℓ(h) = ω.

The nth element of history h is denoted h[n]. If this is
a labelled state, then h[n][1] is the label and h[n][2] is the
state. The notation h[n . .m] denotes the subsequence of h
from elements n to m inclusive. h[n . .m] = 〈〉 if m < n.
The concatenation of two histories is denoted h1 ++ h2 and
defined as follows:

h1 ++ h2 =DF h1 if h1 is non-terminating

=DF 〈h1[1], . . . , h1[ℓ(h1)], h2[1], . . . 〉 otherwise

Note that if h1 ends in ⊥ then it is non-terminating (even
though it is finite), so we still have h1 ++ h2 = h1 in this
case.

Note also that if h1 is terminating and h2 is infinite, then
h1 ++ h2 is infinite. Therefore, h1 ++ h2 is only terminating
when both h1 and h2 are terminating.

The final state of history h, Final(h) is defined as:

Final(h) =DF

{

h[ℓ(h)][2] if h is terminating

⊥ otherwise

From the definitions, we see that, if h2 is non-empty,
then:

Final(h1 ++ h2) =

{

⊥ if h1 is non-terminating

Final(h2) otherwise

For every finite integer n > 0, the nth truncation of a
history h, denoted h ↑ n, is defined as follows:

h ↑ n =DF

{

h[1 . . n] ++ 〈⊥〉 if n < ℓ(h)

h otherwise

A truncation of a history is analogous to an observation of
a program as it executes for a certain number of steps (or a
certain number of interactions with the environment). A ⊥
at the end of the observation (or truncation) indicates that
the program was still executing at the end of the observation
period.

If histories h1 and h2 are such that there exists n such
that h1 = h2 ↑ n, then we say that h1 is a truncation of
h2, denoted h1 4 h2. If h1 is a truncation of h2 and not
equal to h2, then h1 is a proper truncation of h2, denoted
h1 ≺ h2. Every finite history is a truncation of itself, and 〈⊥〉
is a truncation (the zeroth truncation) of every non-empty
history. In fact, 〈⊥〉 is a proper truncation of every history
other than 〈〉 and 〈⊥〉.

An extension of a history h is any history h′ such that
h 4 h′. If h ≺ h′ then h′ is a proper extension of h. A
terminating or infinite history only has itself as an extension,
and has no proper extensions. Only a finite non-terminating
history (i.e. one ending in ⊥) can have a proper extension.
Recall that ⊥ can only appear at the end of a history, so an
extension of a history is formed by removing the final ⊥ and
appending another history.

Any structure can be used to define an operational
semantics for WSL. The semantic function maps each WSL
statement to a function which maps each state to a set
of histories. To simplify the definitions, we define these
functions in such a way that any history set which contains
a finite non-terminating history (i.e. a history ending in ⊥)
should also include every extension of this history. This also
allows us to define ⊓ as a simple union, while satisfying
(S ⊓ abort) ≈ abort and allows us to define the semantics
of while as a simple intersection. Refinement is also a simple
subset relation with this definition.

Let D∗
H(V) be the set of all histories on V and H. (This

includes both finite and infinite histories) We can extend the
concatenation operator ++ to sets of histories in the obvious
way. If h is a history and H a history set then:

h ++ H =DF { h ++ h1 | h1 ∈ H }

For ⊥ we define: Int
op
M (S, V)(⊥) = D∗

H(V) for every
statement S.

For each proper initial state s we define:

Int
op
M (L : {B}, V)(s)

=DF

{

{〈〈L, s〉〉} if s ∈ intM (B, V)

D∗
H(V) otherwise

Int
op
M (L : x := e, V)(s)

=DF {〈〈L, s⊛ {x 7→ intM (e, V)(s)}〉〉}

Int
op
M ((S1 ⊓ S2), V)(s)

=DF Int
op
M (S1, V)(s) ∪ Int

op
M (S2, V)(s)

Int
op
M (S1; S2, V)(s)

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 15

=DF

⋃

{

h ++ Int
op
M (S2, V)(Final(h))

∣

∣ h ∈ Int
op
M (S1, V)(s)

}

Int
op
M (if B then S1 else S2 fi, V)(s)

=DF

{

Int
op
M (S1, V)(s) if s ∈ intM (B, V)

Int
op
M (S2, V)(s) otherwise

Int
op
M (while B do S od, V)(s)

=DF

⋂

n<ω

Int
op
M (while B do S od

n, V)(s)

where the nth approximation of the while loop, denoted
while B do S odn, is defined inductively as follows:

while B do S od0 =DF abort

while B do S odn+1 =DF if B then S; while B do S odn fi

The semantics for the sequence S1; S2 is simply the set of
histories of the form h1 ++ h2 where h1 is in the semantics
for S1 and h2 is in the semantics for S2 when the initial
state for S2 is the final state in h1. Recall that if h1 is non-
terminating then h1 ++ h2 = h1.

Since skip = {true} and abort = {false} we have:

Int
op
M (L : skip, V)(s) =DF {〈〈L, s〉〉}

Int
op
M (L : abort, V)(s) =DF D∗

H(V)

For any history set H, define

Finals(H) =DF { Final(h) | h ∈ H }

to be the set of final states. Clearly:

Finals(D∗

H(V)) = DH(V)

Although we want to include every extension of a non-
terminating finite history in the history set, it is sometimes
useful to distinguish between histories which are included
because of this rule, and other histories. These “other his-
tories” are those which are not a proper extension of some
shorter history in the set. We call these the minimal elements:

Definition 4.3. The minimal elements of a history set are
those which are not proper extensions of some other
element:

Mins(H) =DF

{

h ∈ H | ¬∃h′ ∈ H. h′ ≺ h
}

A history set is normal if it is the union of the extensions
of all of its minimal elements:

Definition 4.4. A normal history set is any set H of histories
such that:

H =
⋃

{ Extensions(h) | h ∈ Mins(H) }

where:

Extensions(h) =DF
{

{h} if h is terminating or infinite

h′ ++ D∗
H(V) otherwise

and h = h′ ++ 〈⊥〉

So a normal history set may be derived from any of its
subsets containing all the minimal elements: simply by
adding all the possible extensions (if any) of the minimal
elements to the set.

The next theorem shows that history sets which result
from the operational semantics of a potentially nondeter-
ministic program are all normal:

Theorem 4.5. For any statement S and initial state s, the his-
tory set H = Int

op
M (S, V)(s) is the union of the extensions

of all minimal elements.

Proof: The proof is by induction on the structure of S. For
a primitive statement the semantics is either a single
terminating history or the set D∗

H(V), both of which are
normal.

For the compound statements, the history set is either
equal to, or a union or intersection of history sets for
smaller statements (or statements with a lower depth of
iteration nesting). The intersection or union of a set of
normal sets is also normal. �

4.5.1 Semi-Refinement on History Sets

Semi-refinement on normal history sets is defined in terms
of the minimal elements of the sets. Intuitively, a semi-
refinement is constructed by taking the set of minimal
elements and replacing some of the elements by an arbitrary,
non-empty set of extensions, to produce a new set of ele-
ments from which a new normal history set is constructed.
See Section 6.1 for some examples which show why this
formal definition is needed.

Definition 4.6. The definition of semi-refinement on normal
history sets is:

H1 4 H2 iff

∀h1 ∈ Mins(H1).∃h2 ∈ Mins(H2). (h1 4 h2) ∧

∀h2 ∈ Mins(H2).∃h1 ∈ Mins(H1). (h1 4 h2)

An equivalent but slightly simpler definition is:

Definition 4.7.

H1 4
′ H2 iff

H2 ⊆ H1 ∧

∀h1 ∈ Mins(H1).∃h2 ∈ Mins(H2). (h1 4 h2)

Theorem 4.8. The two definitions given above are equivalent.

Proof: Assume that H1 4 H2 according to Definition 4.6 and
let h2 be any element of H2. Since H2 is the union of the
extensions of its minimal elements, there must exist h′

2 ∈
Mins(H2) such that h2 ∈ Extensions(h′

2), i.e. h′
2 4 h2.

Now, by Definition 4.6, there exists h1 ∈ Mins(H1) such
that h1 4 h′

2, therefore by transitivity, h1 4 h2. Since H1

is the union of the extensions of its minimal elements,
we must have h2 ∈ H1 as required. This is true for every
h2 ∈ H2, so H2 ⊆ H1.

So Definition 4.6 implies Definition 4.7

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 16

Conversely, let H1 4′ H2 according to Definition 4.7 and
let h2 be any element of Mins(H2). We need to find an
element h1 ∈ Mins(H1) such that h1 4 h2. Since H2 ⊆
H1 we have h2 ∈ H1. By definition, H1 is the union of
the set of extensions of its minimal elements, so there
must be h1 ∈ Mins(H1) such that h2 ∈ Extensions(h1),
in which case h1 4 h2 as required.

So Definition 4.7 implies Definition 4.6. �

Semi-refinement satisfies these properties:

1) Any terminating or infinite history in the original
set must be included in the semi-refinement;

2) Any finite non-terminating history (i.e. one which
ends in ⊥) in the original set must either be included
or replaced by one or more extensions of it in the
semi-refinement;

3) All the histories in the semi-refinement must be
derived from one of the previous two rules.

In [20] we defined a semi-refinement relation on the deno-
tational semantics of WSL as follows: S1 4 S2 if and only
if:

1) Whenever S1 terminates on some initial state, S2 is
equivalent to S1 on that initial state;

2) Otherwise, when S1 does not terminate on some
state, S2 can do anything on that state.

For the operational semantics, the semi-refinement has to
preserve the behaviour of the original program up to the
point where it aborts, after which the semi-refinement can
do anything.

We illustrate the concept with some simple examples:

The non-terminating program L1 : x := 1; abort has
operational semantics

{〈〈L1, {x 7→ 1}〉,⊥〉}

A semi-refinement of this set is:

{〈〈L1, {x 7→ 1}〉, 〈L2, {x 7→ 2}〉,⊥〉}

which is the semantics of: L1 : x := 1; L2 : x := 2; abort,
which is also non-terminating. Another semi-refinement is:

{〈〈L1, {x 7→ 1}〉, 〈L2, {x 7→ 2}〉〉}

which is the semantics of the terminating program L1 : x :=
1; L2 : x := 2.

Another example is:

if y = 0 then x := 42 else abort fi

Which can be semi-refined to: x := 42.

These semi-refinements are also valid semi-refinements
in the denotational semantic relation.

Theorem 4.9. If H1 4 H2 then for any history h, we have
h ++ H1 4 h ++ H2.

Proof: If h is non-terminating then h ++ H1 = {h} and
the result is trivial. So suppose that h is terminating. By
Definition 4.7, H2 ⊆ H1, so: h ++ H2 ⊆ h ++ H1. Let h1

be any minimal element of h ++ H1. We need to find a
minimal element of h ++ H2 which is an extension of h1.
Now, h1 must be of the form h ++ h′

1 where h′
1 ∈ H1.

Also, h′
1 must be a minimal element of H1 since otherwise

there exists h′ ∈ H1 such that h′ ≺ h′
1 and then h ++ h′

contradicts the minimality of h1 in h ++ H1. Now, since
H1 4 H2 there must exist a h′

2 ∈ H2 such that h′
1 4 h′

2.
Let h2 = h ++ h′

2, then h2 ∈ h ++ H2 satisfies h1 4 h2.
This is true for every minimal element h1 in h ++ H1, so
by Definition 4.7: h ++ H1 4 h ++ H2 as required. �

Semi-refinement is defined for operational semantics on
nondeterministic programs as follows:

Definition 4.10.
Operational nondeterministic semi-refinement:
If ∆ is a given set of sentences and S1 and S2 are such
that for every model M of ∆ and every state s ∈ DH(V):

Int
op
M (S1, V)(s) 4 Int

op
M (S2, V)(s)

then we say that S2 is a semi-refinement of S1, or S1 is
semi-refined by S2, and write:

∆ ‖= S1 4 S2

The semantics of a while loop is defined in terms of
the semantics of all of the loop’s approximations. An ap-
proximation of a loop is the result of executing up to n
iterations of the loop. If the program is still running after
n iterations, then the approximation will abort. The idea is
to define the meaning of the full loop by collecting together
the information from all the approximations.

Theorem 4.11. Let S be any statement and B be any formula.
Let DOn = while B do S odn and fn = Int

op
M (DOn, V).

Then, for all s and n < ω: fn(s) 4 fn+1(s).

Proof: The base case is trivial since

f0(s) = Int
op
M (abort, V) = D∗

H(V)

for all s. The only minimal element in D∗

H(V) is 〈⊥〉, so
for every history set H ⊆ D∗

H(V) we have D∗

H(V) 4 H.

Suppose that the result holds for n and for all s. We claim
that fn+1(s) 4 fn+2(s).

If s /∈ intM (B, V) then f0(s) = D∗

H(V) and fn(s) =
{〈〈L0, s〉〉} for all n > 0 and the result holds.

Conversely, if s ∈ intM (B, V) then:

fn+1(s)

= Int
op
M (if B then S; DO

n
else skip fi, V)(s)

= Int
op
M (S; DO

n, V)(s)

=
⋃

{

h ++ fn(Final(h)) | h ∈ Int
op
M (S, V)(s)))

}

By the induction hypothesis and Theorem 4.9:

fn+1(s)

4
⋃

{

h ++ fn+1(Final(h)) | h ∈ Int
op
M (S, V)(s)))

}

4 Int
op
M (if B then S; DO

n+1
else skip fi, V)(s)

since s ∈ intM (B, V)

4 fn+2(s)

Which proves the result. �

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 17

4.5.2 Projection

A program slice is usually defined in terms of a program
point and a variable, or set of variables. If the original
program terminates on a particular initial state then the
slice also terminates and produces the same value(s) for the
variable(s) at the given point [13,36].

We generalise the program point to a set of labels, with
a (potentially different) set of variables of interest at each
label of interest. The formal definition of a slicing criterion is
therefore a function which maps a label to a set of variables.

Definition 4.12. A Slicing Criterion C is a partial function
C which maps from labels to sets of variables. For each
label L in the domain of C , all statements with label L
are “points of interest” and C(L) is a set of variables:
the “variables of interest” at this particular “point of
interest”. Note that each different point of interest may
have a different set of variables of interest.

Recall that if s is a state and X a set of variables, then
s ↓ X, is the state: {x1 7→ s(x1), . . . , xn 7→ s(xn)} where
{x1, . . . , xn} is the set X ∩ Dom(s). Each variable in s ↓ X
has the same value as in s.

To define projection on histories, we first define projec-
tion on a singleton history (a terminating history containing
a single labelled state).

Definition 4.13. If L is a label, s a state and C a slicing
criterion, then the projection of 〈〈L, s〉〉 on C is defined:

〈〈L, s〉〉 ↓ C =DF

{

〈〉 if L /∈ Dom(C)

〈〈L, s ↓ C(L)〉〉 otherwise

We also define: 〈⊥〉 ↓ C =DF 〈⊥〉 for every C . This
will ensure that the projection of a finite non-terminating
history is also non-terminating.

Given a history h and slicing criterion C , define the
function Proj(h,C) as follows:

Proj(h,C) =DF 〈h[1]〉 ↓ C ++ 〈h[2]〉 ↓ C ++ . . .

Note that if h is infinite, then the infinite concatenation could
still return a finite result. In this case, we must have some N
such that 〈h[n]〉 ↓ C = 〈〉 for all n > N .

If the original history was infinite, then the program it
represents was non-terminating. If Proj(h,C) is finite, then
it represents a terminating computation. We want to ensure
that the projection is non-terminating whenever the original
history was non-terminating. To do this we append the state
⊥ to represent the infinite sequence of “elided” labelled
states.

Therefore, we define the projection of a history on a
slicing criterion as follows:

h ↓ C =DF











Proj(h,C) ++ 〈⊥〉 if h is infinite and

Proj(h,C) is finite

Proj(h,C) otherwise

This ensures that the projection of a non-terminating history
is always non-terminating. Any projection of a terminating
history will necessarily be terminating.

The projection relation is extended to operational state
transformations in the obvious way. For any operational
state transformation f and slicing criterion C , define:

(f ↓ C)(s) =DF f(s) ↓ C

We use the concept of projection to give a formal defini-
tion for operational slicing:

Definition 4.14. An Operational Syntactic Slice of S on a
slicing criterion C is any program S′ such that:

S′ ⊑ S and ∆ ‖= S ↓ C 4 S′ ↓ C

Definition 4.15. An Operational Semantic Slice of S on a slicing
criterion C is any program S′ such that:

∆ ‖= S ↓ C 4 S′ ↓ C

To analyse the behaviour of an interactive program, we
can do the following:

1) Label all statements which can interact with the
environment;

2) For each label, L determine the set of variables
whose values are examined or updated by the in-
teraction;

3) Define a slicing criterion C such that, for each label
L, C(L) is the set of variables identified in step 2;

4) Slice the program on slicing criterion C .

In the next section we introduce a denotational semantics
for the language and define a slicing relation on in terms of
the semantics. In Section 5 we prove that these two formal-
isations of slicing are equivalent. This gives us confidence
that the formalisation of the informal concept of a “program
slice” is correct.

4.6 Denotational Semantics

The denotational semantics defines the semantics of a pro-
gram as a function which maps each initial state to the set
of possible final states. If the set of final states includes ⊥,
then the program may choose not to terminate. In this case,
we don’t care what else it may choose to do: so if the set
of final states includes ⊥ then it is defined to include every
other state in DH(V) as well. This definition means that
we can define refinement as a simple subset relation on the
denotational semantics. If f1 is the semantic function for
statement S1 and f2 is the semantic function for S2, then
f2 is a refinement of f1 if and only if ∀s. f2(s) ⊆ f1(s).
Therefore, we call this property subset refinement.

The rationale for including every state when the set of
final states includes ⊥ comes from the following chain of
reasoning:

1) A specification defines a set of initial states (the states
for which the program is defined) and for each of
these initial state it defines the set of allowed final
states. These are all proper states, so the specifi-
cation for a non-terminating program defines an
empty set of states for which the program is defined;

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 18

2) For a program to satisfy the specification, the pro-
gram’s set of final states must be a subset of the
allowed final states, for each of the initial states for
which the program is required to terminate.

3) A refinement of a program is defined as any program
which satisfies all the specifications satisfied by the
original program;

4) If a program’s set of final states includes ⊥ for a
particular initial state, then it cannot satisfy any
specifications for that initial state. So any program
is a refinement of any program which may abort (for
that initial state);

5) So, any program which may abort on an initial state
is equivalent to any other program which may abort
on that state, in the sense that each program is a
refinement of the other;

6) If we ensure that every other state is included in
the set of final states whenever ⊥ is included, then
refinement becomes a simple subset relation and
two programs are semantically equivalent precisely
when they have identical semantics. Another ad-
vantage is that the semantics of the while is very
simple: the set of final states for the whole loop is
simply the intersection of the sets of final states for
all the finite approximations.

These considerations lead to the following definition of
the semantic function for nondeterministic programs.

For initial state ⊥ we define: Intden
M (S, V)(⊥) = DH(V)

for every statement S. Otherwise:

Intden
M (L : {B}, V)(s)

=DF

{

{s} if s ∈ intM (B, V)

DH(V) otherwise

Intden
M (L : x := e, V)(s)

=DF {s⊛ {x 7→ intM (e, V)(s)}}

Intden
M ((S1 ⊓ S2), V)(s)

=DF Intden
M (S1, V)(s) ∪ Intden

M (S2, V)(s)

Intden
M (S1; S2, V)(s)

=DF

⋃

{

Intden
M (S2, V)(t)

∣

∣

∣
t ∈ Intden

M (S1, V)(s)
}

Intden
M (if B then S1 else S2 fi, V)(s)

=DF

{

Intden
M (S1, V)(s) if s ∈ intM (B, V)

Intden
M (S2, V)(s) otherwise

intden
M (while B do S od, V)(s)

=DF

⋂

n<ω

Intden
M (while B do S odn, V)(s)

The semantics for the while loop is simply the intersection
of the semantics for each finite approximation. The result is
the least defined statement which is a refinement of all the
approximations.

An important property of nondeterministic choice is that
combining any statement with abort will give abort, i.e.
for any statement S, any reasonable semantic equivalence
relation should have:

(S ⊓ abort) ≈ abort

This makes sense because the statement (S1 ⊓ S2) can
only satisfy a specification if both S1 and S2 satisfy the
specification. abort can only satisfy the totally undefined
specification (which is abort itself), so (S ⊓ abort) also
only satisfies the specification abort. So (S ⊓ abort) must
be equivalent to abort.

The semi-refinement relation is defined on sets of states
as follows. For any sets of states S1, S2:

S1 4 S2 iff ⊥ ∈ S1 ∨ S1 = S2

Semi-refinement is defined for denotational semantics on
nondeterministic programs as follows:

Definition 4.16.
Denotational nondeterministic semi-refinement:
If ∆ is a give set of sentences and S1 and S2 are such that
for every model M of ∆ and every state s ∈ DH(V):

Intden
M (S1, V)(s) 4 Intden

M (S2, V)(s)

then we say that S2 is a semi-refinement of S1, or S1 is
semi-refined by S2, and write:

∆ |= S1 4 S2

4.7 Extended Denotational Semantics

The paper “Slicing as a Program Transformation” [20] con-
verts middle slicing to end slicing by adding code to append
the current values of the variables of interest to a new
variable slice at the appropriate points and then end slicing
on slice. This will “capture” the sequence of values taken on
by the variables of interest at the points of interest: but the
captured values will only reach the end of the program if
the program subsequently terminates.

Similarly, it is possible to “capture” all the interactions
of the program with its environment: by recording the se-
quence of values taken on by of the variables of interest in a
new variable which will appear in the final state. Again, this
approach will not work for programs which (intentionally)
do not terminate.

To ensure that the captured data is observable in the
final state, we annotate the program in such a way as to
enforce immediate termination when a sufficient number
of interactions have been encountered. (The requirement
which constitutes a “sufficient” number of interactions will
be provided in an additional input variable). The “extended
denotation semantics” for the original program is simply
the standard WSL semantics [20] for the annotated program.
The middle slice for a potentially non-terminating program
is then defined as an end slice on the variable slice for the
annotated program, using the slicing relation defined in [20].

In the previous section we defined an operational se-
mantics and projection operator which give an operational
definition of slicing. In the rest of this section we describe
how to carry out this slicing using the extended denotational
semantics.

Let C be any slicing criterion, and let S be any program.
We want to “capture” the values of the variables of interest
at the labels of interest (as defined by C) by appending to

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 19

a new variable slice. We want to stop execution (enforce
immediate termination) as soon as slice gets sufficiently
large. The obvious way to do this is to test the length of slice

and stop as soon as it reaches a certain length. This will work
for deterministic programs, but simply testing the length is
not sufficiently precise for nondeterministic programs (see
Section 6.4). Instead we need to test, for each label L, the
number of elements in slice which have that label. We set
a maximum value, or “quota” for each label and terminate
the program as soon as any label has reached its quota of
elements in slice. The variable limit contains a function from
labels to integers which records the maximum number of
slice elements allowed for each label. This is called a limit
function.

Let q be a terminating history and L be the set of all
labels and c : L → N be a limit function which records the
maximum count for each label. The relation ≪ is defined:

q ≪ c =DF ∀L ∈ L. ℓ(q ↓ CL) < c(L)

where CL is the slicing criterion {L 7→ V }. This relation
tests each label against its quota: as defined by the limit
function c. The original program is annotated with tests for
this condition, arranged to cause the program to terminate
immediately as soon as this condition fails. Note that if
c(L) = 0 for any label, then no history can satisfy the
condition and the program terminates immediately. The
condition ∃L ∈ L. c(L) = 0 is equivalent to the condition
〈〉 6≪ c.

The value appended to the sequence in slice is the
pair 〈L, state(C(L))〉 where L is the current label and
state(C(L)) is some suitable WSL representation of the
current values of the variables in the set C(L). For example,
if C(L) is the set {x, y} then we can define state(C(L)) as
〈〈“x”, x〉, 〈“y”, y〉〉.

The function Apply(C,S) takes a slicing criterion C and
a labelled program S and returns a new unlabelled program
which is an annotated version of S in which assignments to
slice have been added and tests of slice against limit have
been introduced at all program points, and the program
terminates as soon as slice 6≪ limit. The formal definition
follows.

If L : S is a labelled primitive statement, then we define:

Apply(C,L : S)

=DF if slice ≪ limit then S fi if L /∈ Dom(C)

=DF











if slice ≪ limit

then S; slice := slice ++ 〈〈L, state(C(L))〉〉 fi

otherwise

For compound statements we define:

Apply(C,S1; S2)

=DF Apply(C,S1); Apply(C,S2)

Apply(C, if B then S1 else S2 fi)

=DF if B then Apply(C,S1) else Apply(C,S2) fi

Apply(C,while B do S1 od)

=DF while slice ≪ limit ∧ B do Apply(C,S1) od

This technique of annotating a program to enforce termina-
tion under certain conditions has been used for many years
to model unbounded loops with exit statements and action
systems with the special action Z: where the statement
call Z causes immediate termination of the action system
(see [9] for example). So the methods for transforming,
simplifying and analysing programs annotated in this way
are well developed.

We can now define a semantic slice relation on the
denotational semantics.

Definition 4.17. Let V ′ = V ∪{slice, limit}. If for every model
M of the countable set of sentences ∆ we have:

intden
M (S1V

′) ↓ {slice} 4 intden
M (S2, V

′) ↓ {slice}

then we write:

∆ |= S1

slice
4 S2

Recall that for a state s and set of variables X, the state
s ↓ X is the subset of s whose domain consists of the
variables Dom(s) ∩X.

Definition 4.18. A Denotational Syntactic Slice of S on a slicing
criterion C is any program S′ such that:

S′ ⊑ S and ∆ |= Apply(C,S)
slice
4 Apply(C,S′))

Definition 4.19. A Denotational Semantic Slice of S on a slicing
criterion C is any program S′ such that:

∆ |= Apply(C,S)
slice
4 Apply(C,S′))

In [20] we give a definition of slicing defined in terms of
weakest preconditions and prove that it is equivalent to the
denotational semantic definition.

We now have two different definitions of a slice on a slic-
ing criterion C . One is defined by an operational semantics
and the other is defined by a denotational semantics on a
program generated by applying the slicing criterion to the
original program.

In the next section we will prove that these two defi-
nitions of slicing are equivalent. Therefore: an interactive
program, such as an embedded system, can be analysed by
slicing on its set of interactions with the environment. This
analysis can be carried out using the operational semantics,
or equivalently, the denotational semantics.

5 Equivalence of Operational and Denota-
tional Semantics for Slicing

In this section we formally prove the equivalence of the
operational and denotational semantics for slicing. This
allows us to use either method for constructing slices, and
for analysing the interactive behaviour of programs, and
gives confidence that the informal notion of a “program
slice” has been formalised correctly.

To prove equivalence of the two forms of slicing we
take the operational semantics, project it using the slicing
criterion, and then truncate each history, if necessary, just

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 20

enough to ensure that it satisfies h ≪ c. The function fc(s)
returns this set of truncated histories.

The idea is that this set of truncated histories can be
computed from the denotational semantics of the annotated
program by examining the final value of slice in each final
state when executed in an initial state in which slice contains
the empty sequence and limit contains the limit function
c. (Recall that the annotations ensure that the program
terminates immediately as soon as slice ≪ limit becomes
false).

In order to push the proof through for sequential com-
position, we need to take account of the sequence of states
which the surrounding program has executed before start-
ing execution of the statement under consideration. This
sequence is denoted by q in the proof. Instead of initialising
slice to the empty sequence we initialise slice with the value
q and initialise limit with the value c⊕q where, for each label
L:

(c⊕ q)(L) =DF c(L) + ℓ(q ↓ CL)

The function gc,q(s) is the denotational semantics of the
annotated program with these initialisations. Finally, we
define hq,c to be {q} if gc,q(s) does not terminate and
otherwise to be the set of values of slice in all the final states
in gc,q(s).

The equation we want to prove is then:

q ++ f
c(s) = h

c,q(s) (4)

This equation shows that the projected operational seman-
tics fc(s) can be extracted from the denotational semantics
of the annotated program via h. If we define the slicing
criterion to include all variables at all labels, then the pro-
jection has no effect: so we can extract the entire operational
semantics, if required.

Informally, we can think of each execution of the an-
notated program under the denotational semantics as a
“probe” which computes the slice up to a certain limit
(given by the limit function c provided in the initial value
of variable limit). If the probe execution does not terminate,
then the limit function can be tightened until termination
is reached. The set of all “probe” executions provides all
the information needed to compute the complete slice. Since
limit is a new variable, if the annotated version of a proposed
slice S is a semi-refinement of the annotated version of
P, then (according to 4) the projection of the operational
semantics for S will be a semi-refinement of the projection
of the operational semantics for P. So the two definitions of
slicing are equivalent.

First, we prove some preliminary theorems.

Theorem 5.1. For all statements S and initial states s:

Intden
M (S, V)(s) = Finals(Int

op
M (S, V)(s))

Proof: The proof is by induction on the structure of S and
the depth of while loop nesting.

Case (1): Suppose S is the assertion L : {Q}.
If s ∈ intM (Q, V) then Intden

M (S, V)(s) = {s} and
Int

op
M (S, V)(s) = {〈〈L, s〉〉} and the result follows. Con-

versely, suppose s /∈ intM (Q, V), then Intden
M (S, V)(s) =

DH(V) and Int
op
M (S, V)(s) = D∗

H(V) and the result
follows.

Case (2): Suppose S is the assignment L : x := e. Then
Intden

M (S, V)(s) = {s ⊛ {x 7→ e}} and Int
op
M (S, V)(s) =

{〈〈L, s⊛ {x 7→ e}〉〉} and the result follows.

Case (3): Suppose S = S1; S2:
If ⊥ ∈ Finals(Int

op
M (S1, V)(s)) then

⊥ ∈ Finals(Int
op
M (S1; S2, V)(s)) and:

Finals(Int
op
M (S1; S2, V)(s))

= DH(V) = Intden
M (S1; S2, V)(s))

So suppose ⊥ /∈ Finals(Int
op
M (S1, V)(s)), so every h ∈

Finals(Int
op
M (S1, V)(s)) is terminating:

Finals(Int
op
M (S, V)(s))

= Finals
(

⋃

{

h ++ Int
op
M (S2, V)(Final(h))

∣

∣ h ∈ Int
op
M (S1, V)(s)

}

)

=
⋃

{Finals(h ++ Int
op
M (S2, V)(Final(h)))

| h ∈ Int
op
M (S1, V)(s)}

=
⋃

{Finals(Int
op
M (S2, V)(Final(h)))

| h ∈ Int
op
M (S1, V)(s)}

since h is a terminating history

=
⋃

{

Intden
M (S2, V)(Final(h))

∣

∣

∣
h ∈ Int

op
M (S1, V)(s)

}

by the induction hypothesis on S2

=
⋃

{

Intden
M (S2, V)(t)

∣

∣

∣
t ∈ Finals(Int

op
M (S1, V)(s))

}

=
⋃

{

Intden
M (S2, V)(t)

∣

∣

∣ t ∈ Intden
M (S1, V)(s))

}

by the induction hypothesis on S1

= Intden
M (S1; S2, V)(s)

Case (4): If S is if B then S1 else S2 fi then consider the
cases s ∈ intM (B, V) and s /∈ intM (B, V) and apply the
induction hypothesis for S1 and S2 respectively.

Case (5): If S is (S1 ⊓ S2) then:

Finals(Int
op
M (S, V)(s))

= Finals(Int
op
M (S1, V)(s) ∪ Int

op
M (S2, V)(s))

= Finals(Int
op
M (S1, V)(s)) ∪ Finals(Int

op
M (S2, V)(s))

= Intden
M (S1, V)(s) ∪ Intden

M (S2, V)(s)

by the induction hypothesis on S1 and S2

= Intden
M ((S1 ⊓ S2), V)(s)

Case (6): If S is while B do S1 od then let DOn =
while B do S1 odn. Let 〈H0,H1, . . . 〉 be an infinite
sequence of history sets such that Hn 4 Hn+1 for all
n < ω. We claim that:

Finals(
⋂

n<ω

Hn) =
⋂

n<ω

Finals(Hn)

See below (Theorem 5.6) for the proof of this claim.

Finals(Int
op
M (while B do S1 od, V)(s))

= Finals(
⋂

n<ω

Int
op
M (DO

n, V)(s))

by definition.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 21

=
⋂

n<ω

Finals(Int
op
M (DO

n, V)(s))

by Theorem 4.11 above and Theorem 5.6 below.

=
⋂

n<ω

(Intden
M (DO

n, V)(s))

by the induction hypothesis for each DOn

= Intden
M (while B do S1 od, V)(s))

by definition. �

Definition 5.2. A terminating history set is one in which all
elements are terminating.

Lemma 5.3. If history set H1 is terminating and H1 4 H2,
then H1 = H2.

Proof: By Definition 4.7 H2 ⊆ H1, so H2 must also be
terminating. Also, any h1 ∈ H1 is terminating and
therefore minimal, so by Definition 4.7 there exists a
minimal element h2 ∈ H2 such that h1 4 h2. Since
h1 is terminal, we must have h2 = h1 and therefore
h1 ∈ H2. But this is true for all h1 ∈ H1. So H1 ⊆ H2

and therefore, H1 = H2. �

Definition 5.4. A finitely branching history set is one whose
elements form a finitely branching tree. The set of tree
nodes is defined as the set of all prefixes (initial seg-
ments) of elements in H:

N = { h[1 . . n] | h ∈ H ∧ n 6 ℓ(h) }

The set of edges is defined as:

E = { 〈h[1 . . n− 1], h〉 | h ∈ N ∧ n = ℓ(h) > 0 }

Lemma 5.5. For any statement S and initial state s the set
Mins(Int

op
M (S, V)(s)) is a finitely-branching history set.

Proof: The proof is by induction on the structure of S
and the depth of while loop nesting. For the assertion,
(Int

op
M (L : {Q}, V)(s)) is either {〈L, s〉}, which is triv-

ially finitely-branching, or D∗
H(V). In the latter case,

Mins(D∗
H(V)) = {〈⊥〉} which is also finitely branching.

For the while loop, Int
op
M (S, V)(s) is the intersection of a

sequence of history sets. By the induction hypothesis, all
of these sets are finitely branching.

The other cases are straightforward. �

To complete the proof of Theorem 5.1 we need to prove
the following:

Theorem 5.6. Let 〈Hn | n < ω〉 be any infinite sequence of
finitely branching history sets such that Hn 4 Hn+1 for
all n. Then:

Finals(
⋂

n<ω

Hn) =
⋂

n<ω

Finals(Hn)

Proof: Suppose that there exists k such that Hn = Hk for
all n > k. By the definition of semi-refinement (Defini-
tion 4.7), Hk ⊆ Hn for all n 6 k. So

⋂

n<ω Hn = Hk and
⋂

n<ω Finals(Hn) = Finals(Hk) and the result follows.

Conversely, suppose for every k there exists n > k such
that Hk ≺ Hn. As in Theorem 4.11, we can construct an

infinite sequence of integers mn such that Hm
n
≺ Hm

n+1

for all n. Clearly:

⋂

n<ω

Hn =
⋂

n<ω

Hm
n

For every n we have Hm
n

≺ Hm
n+1

, so there must
be a finite non-terminating history in every Hm

n
. So

⊥ ∈ Finals(Hm
n
) for every n and so ⊥ ∈ Finals(Hn)

and therefore Finals(Hn) = DH(V) for every n, so
⋂

n<ω
Finals(Hn) = DH(V).

We claim that there is an infinite history h ∈
⋂

n<ω
Hn,

which means that

Finals(
⋂

n<ω

Hn) = DH(V)

and the theorem is proved.

To prove the claim we define pm(H) as the set of all
prefixes of minimal elements of any history set H:

pm(H) =DF { h[1 . . n] | h ∈ Mins(H) ∧ n 6 ℓ(h) }

For every Hm
n

, if h is a minimal element of Hm
n

then
either h ∈ Hm

n+1
or there is an extension of h in Hm

n+1
.

Either way, h is in the set of prefixes of minimal elements
of Hm

n+1
. So by induction on n, h ∈ pm(

⋂

n<ω Hn). But
this applies to all prefixes of all minimal elements of any
Hn. So:

⋃

n<ω

pm(Hn) ⊆ pm(
⋂

n<ω

Hn)

Now consider the tree defined by
⋃

n<ω pm(Hn). By
Lemma 5.5, this is a finitely-branching tree. Also, for each
m, Hm

n
≺ Hm

n+1
implies Mins(Hm

n
) ⊂ Mins(Hm

n+1
),

so pm(Hm
n
) ⊂ pm(Hm

n+1
) so the tree is a union of an

infinite sequence of trees, each of which is strictly larger
than the previous one. So the tree is infinitely large.

By König’s Lemma [51], embedded in this infinitely large
and finitely branching tree there must be an infinite
path 〈h1, h2, . . . , hn, . . . 〉 where each hn is of length n
and is a prefix of an element in

⋃

n<ω
pm(Hn), so is

itself an element of
⋃

n<ω
pm(Hn). Construct the in-

finite path h from this sequence in the obvious way:
h = 〈h1[1], h2[2], h3[3], . . . 〉. Pick any Hn in the sequence,
and let h[1 . .m] be the largest prefix of h which is in Hn.
Now, by definition of h there must be some other ele-
ment Hk such that h[1 . .m + 1] is a prefix of an element
of Hk. Clearly k > n, so Hn ≺ Hk and so h[1 . .m + 1]
must be a prefix of an extension of an element in Hn.
The only possible history in Hn which can be extended
to h[1 . .m + 1] is h[1 . . m] ++ 〈⊥〉, since h[1 . . m] is the
largest prefix of h which is a prefix of an element of Hn.
Now, h[1 . .m] ++ 〈⊥〉 is a minimal element in Hn, so
every extension of it is in Hn. In particular, h ∈ Hn. But
this applies to every n, so h ∈

⋂

n<ω Hn as required.

This completes the proof. �

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 22

The following counterexample shows that the condition
that each Hn is finitely branching is a necessary condition.
For integers j and n, define the history hjn as follows:

hj,n =



















〈〈L0, {x 7→ j}〉, 〈L0, {x 7→ j − 1}〉

. . . 〈L0, {x 7→ 0}〉〉 if j < n

〈〈L0, {x 7→ j}〉, 〈L0, {x 7→ j − 1}〉

. . . 〈L0, {x 7→ j − n}〉,⊥〉 if j > n

In the first case, there are j+1 elements in the history. In the
second case there are n+ 1 elements. Now let:

Hn =
⋃

j<ω

Extensions(hj,n)

Every Hn contains a non-terminating element: the his-
tory hn,n. So ⊥ ∈ Finals(Hn) for every n, and ⊥ ∈
⋂

n<ω
Finals(Hn). We claim that there is no non-terminating

history which appears in every Hn. Every history in every
Hn starts with an element of the form 〈L0, x 7→ k〉. Suppose
that h is a non-terminating history which appears in every
Hn. The first element of h is of the form 〈L0, x 7→ k〉. But
in every Hk+1, every element which starts 〈L0, h 7→ k〉 is
terminating. So h /∈ Hk+1 which is a contradiction. So every
element of

⋂

n<ω
Hn terminates, so ⊥ /∈ Finals(

⋂

n<ω
Hn).

5.1 Proof of Equivalence

The main theorem in this section (Theorem 5.15 will show
that provided the sets of labels in the two branches of
a choice are disjoint (i.e. the same label does not appear
in both branches of a nondeterministic choice), then op-
erational slicing is equivalent to denotational slicing on
nondeterministic programs.

First we define some notation.

Definition 5.7. For any history h and function c : L → N,
define the restriction of h to c, denoted h ⇓ c, as follows:

h ⇓ c =DF











h if h ≪ c

〈〉 if 〈〉 6≪ c

h′ otherwise

where:

h′ = h[1 . .max({ n ∈ 1 . . ℓ(n) | h[1 . . n− 1] ≪ c })]

Informally, this does nothing to h if h ≪ c and otherwise
truncates h to the point where it just fails to satisfy h ≪ c.
This is the point where the annotated program will imme-
diately terminate, without appending anything further to
slice.

The restriction operator is extended to sets of histories in
the obvious way:

Definition 5.8. For any set H of histories and function c :
L → N, define the set H ⇓ c as follows:

H ⇓ c =DF { h ⇓ c | h ∈ H }

Given a function c : L → N and a terminating history
q we define a new function c ⊕ q : L → N which increases
the value of c on each label according to the number of
elements of q which have that label. Similarly we define

c⊖ q : L → N which decreases the value of c on each label,
provided c(L) > ℓ(q ↓ CL) for each L. The operators ⊕ and
⊖ are used to loosen and tighten the limit function according
to the given terminating history q.

Definition 5.9. For each label L ∈ L:

(c⊕ q)(L) =DF c(L) + ℓ(q ↓ CL)

(c⊖ q)(L) =DF c(L)− ℓ(q ↓ CL)

where, for any label L, define CL as the criterion {L 7→
V }.

Lemma 5.10. Properties of ⊕ and ⊖:
For each history q and function c : L → N:

1) (c⊕ q)⊖ q = c
2) If c⊖ q is well-defined then (c⊖ q)⊕ q = c
3) c⊖ (q ⇓ c) is always well-defined.
4) q ⇓ (c⊕ q) = q
5) If q 6≪ c then (q ⇓ c) 6≪ c
6) If q 6≪ c then c ⊖ (q ⇓ c) has a zero value for some

label, i.e. 〈〉 6≪ c⊖ (q ⇓ c)
7) For any histories q1 and q2 we have: (c⊕ q1)⊕ q2 =

c⊕ (q1 ++ q2).

Proof: The proofs follow directly from the definitions. �

We next define the functions f , g and h, each of which
maps a state to a set of states or set of histories.

Let S be any (potentially nondeterministic) statement for
which the same label does not appear in both branches
of any nondeterministic choice, and let C be any slicing
criterion. S and C will be fixed for the rest of this section.

Definition 5.11. For each initial state s ∈ DH(V), function
c : L → N and terminating history q, define:

f(s) =DF Int
op
M (S, V)(s) ↓ C

f
c(s) =DF f(s) ⇓ c

g
c,q(s) =DF Intden

M (Apply(C,S), V ′)

(s⊛ {limit 7→ c⊕ q, slice 7→ q})

The function hc,q(s) is defined from g as follows:

If c(L) = 0 for any label L, then 〈〉 6≪ c and we cannot
have ∀L ∈ L. ℓ(q ↓ CL) < c(L) for any q, so we define:

h
c,q(s) =DF {q}

for these values of c and any q and s.

Otherwise, we must have c(L) > 0 for every label L.

If gc,q(s) terminates, then define:

h
c,q(s) =DF { t(slice) | t ∈ g

c,q(s) }

If gc,q(s) does not terminate, i.e. if ⊥ ∈ gc,q(s), then we
attempt to reduce c until it does terminate. If gc′,q(s)
aborts for every c′ where 〈〉 ≪ c′ and c′ 6 c, then define:

h
c,q(s) =DF {q ++ 〈⊥〉}

For example, hc,q(⊥) = {q} ++ 〈⊥〉 for every c where
〈〉 ≪ c.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 23

Otherwise, gc,q terminates for small values of c but then
fails to terminate at some point as c is increased. At the
boundary value of c, gc,q appends one or more elements
to slice and then terminates. If c is increased, then
gc,q aborts without appending anything further to slice.
Suppose c(L) is increased by 1. Then we must previously
have had slice 6≪ limit immediately after appending an
element labelled L to slice: and this caused termination.
Now we have slice ≪ limit and execution continues
and aborts without appending anything further. So each
execution path ending in a label L leads to an abort.

Let c′ be the largest function smaller than c such that

〈〉 ≪ c′ and gc′,q(s) terminates. In other words:

c′ 6 c ∧ ⊥ /∈ g
c′,q(s) ∧

∀c′′ : L → N. (⊥ /∈ g
c′′,q(s) ⇒ c′′ 6 c′)

For each label L, if c′(L) < c(L) then we know that
increasing c′(L) by one will produce a function for
which g does not terminate. Suppose that L has just

been appended to slice: then in the execution of gc′,q(s),
we must have had slice ≪ c′ just before the append.
If c′(L) is increased, then g aborts without appending
anything further. So we must have had slice 6≪ c′ just
after the append, which caused immediate termination,
while increasing c′(L) causes a subsequent abort. This is
true for every label L such that c′(L) < c(L). So we will
indicate this fact by appending 〈⊥〉 to each path in the

final value of slice in gc′,q(s) which ends with any label
L such that c′(L) < c(L).

First define the function app which computes what to
append to a given history:

app(c, c′, h) =DF

{

〈⊥〉 if c′(h[ℓ(h)][1]) < c(h[ℓ(h)][1])

〈〉 otherwise

Now define:

h
c,q(s) =DF

{

t(slice) ++ app(c, c′, t(slice))
∣

∣

∣
t ∈ g

c′,q(s)
}

Lemma 5.12. Every element of hc,q(s) is of the form q ++ t
for some finite history t.

Proof: This is because hc,q(s) is constructed by appending
to the history in the final value of slice in the execution
of Apply(C,S) where slice initially has the value q and
Apply(C,S) can only modify slice by appending to the
current value. �

For any non-empty sequence x define

butlast(x) =DF x[1 . . ℓ(x)− 1]

which is x with the last element removed.

Lemma 5.13. If gc,q(s) terminates and q ++ t is a possible
final value for slice and t 6= 〈〉, then butlast(t) ≪ c.

Proof: For q ++ t to be a possible final value for slice,
there must be some point in the execution of S where
a primitive statement is executed which appends the last

element of q ++ t onto slice. Just before executing this
statement we must have slice = q ++ butlast(t), and for
the statement to be executed we must have slice ≪ limit,
i.e. q ++ butlast(t) ≪ c⊕ q, so butlast(t) ≪ c as required.
A formal proof is by induction on the structure of S.

�

Theorem 5.14. For all s ∈ DH(V) and for all terminating
histories q and all functions c : L → N, the set hc,q(s) is
a set of minimal elements.

In other words Mins(hc,q(s)) = hc,q(s).

Proof: By Lemma 5.12, every non-terminating history in
hc,q(s) is of the form q ++ t ++ 〈⊥〉 where t is a
terminating history. Suppose that there exists a history
t1 such that q ++ t ++ t1 ∈ hc,q(s) and t1 6= 〈〉 and
t1 6= 〈⊥〉. Then by the definition of h there exists c′ < c

such that gc′,q(s) terminates with q ++ t as a possible
final value for slice. In other words:

⊥ /∈ g
c′,q(s) and ∃s′ ∈ g

c′,q(s). s′(slice) = q ++ t

Since gc′′,q(s) aborts for any c′′ such that c′ < c′′ 6 c, the
value q ++ t in slice must have got “too big” and caused
subsequent guarded statements to terminate instead of
aborting. So the test slice ≪ limit must have failed at this
point. So we must have q ++ t 6≪ c′ ⊕ q, i.e. t 6≪ c′.

Now consider q ++ t ++ t1. Let t′1 be t1 with any trailing
⊥ deleted. Then t′1 6= 〈〉 and t′1 6= 〈⊥〉, so t′1 must start
with at least one proper labelled state.

By the definition of h, there exists c1 < c such that
gc1,q(s) terminates with q ++ t ++ t′1 as a possible final
value for slice. Since c′ is the largest function for which
g terminates, we must have c1 6 c′. Also, since t′1 is
non-empty, by Lemma 5.13 we have butlast(q ++ t ++
t′1) ≪ c1 ⊕ q, so (since t′1 is non-empty) q ++ t ≪ c1 ⊕ q,
i.e. t ≪ c1. But c1 6 c′, so we have t ≪ c′ which is a
contradiction. �

The next theorem is the main result in this section. It
shows that there is a close connection between the projected
operational semantics of a program and the denotational
semantics of the corresponding annotated program.

Theorem 5.15. For all s ∈ DH(V) and for all terminating
histories q and all functions c : L → N:

q ++ f
c(s) = h

c,q(s)

Proof: The proof is by induction on the structure of S and
the depth of while loop nesting.

If c(L) = 0 for any label L, then hc,q(s) = {q} and
fc(s) = 〈〉 and the result follows. So in the following
cases we may assume that c(L) > 0 for every label L.

Case (1): For the first base case, suppose that S = L : S′

where S′ is any primitive statement and L /∈ Dom(C).
Let s be any initial state in DH(V). First, suppose that
S′ terminates. The set of final states for a terminating
primitive statement is a singleton. Let t be the (single)
final state. Then:

f
c(s) = {〈〈L, t〉〉} ↓ C ⇓ c = {〈〉} ⇓ c = {〈〉}

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 24

Now:

Apply(C,S) = if slice ≪ c then S′ fi

which does not assign to slice. So: gc,q(s) terminates and
slice is unchanged in every final state, i.e.:

g
c,q(s) = {t⊛ {limit 7→ c⊕ q, slice 7→ q}} (since 〈〉 ≪ c)

So: hc,q(s) = {t(slice)} = q and the result follows.

If S′ does not terminate on s then: fc(s) = D∗

H(V) ↓
C ⇓ c = {〈⊥〉}, for all 〈〉 ≪ c and gc,q(s) aborts (since
〈〉 ≪ c). In fact, gc′,q(s) aborts for every c′ where 〈〉 ≪ c′

and c′ 6 c. So: hc,q(s) = {q ++ 〈⊥〉} and the result
follows.

Case (2): Now suppose that S = L : S′ where S′ is
any primitive statement and L ∈ Dom(C). As above,
suppose that suppose that S′ terminates in state t. Then:

f
c(s) = {〈〈L, t〉〉} ↓ C ⇓ c

= {〈〈L, t ↓ C〉〉} ⇓ c

= {〈〈L, t ↓ C〉〉}

since 〈〉 ≪ c. Now:

Apply(C,S) =

if slice ≪ limit

then S′; slice := slice ++ 〈〈L, state(C(L))〉〉 fi

After the (terminating) execution of S′ on initial state s
we have: state(C(L)) = t ↓ C . So:

g
c,q(s) = {t ⊛ {limit 7→ c⊕ q, slice 7→ q ++ 〈〈L, t ↓ C〉〉}}

since 〈〉 ≪ c.

So: hc,q(s) = {q ++ 〈〈L, t ↓ C〉〉} and the result follows.

If S′ does not terminate, then: fc(s) = D∗
H(V) ↓ C ⇓ c =

{〈⊥〉} and gc,q(s) aborts (since 〈〉 ≪ c), and the result
follows as in Case (1).

This proves the theorem for all primitive statements.
For the induction step, let S be a compound statement
and suppose that the theorem holds for all statements
smaller than S (in terms of the number of primitive
statements) and with the same maximum depth of while

loop nesting, and for all statements (however large) with
a smaller depth of while loop nesting. In effect, we are
using a double induction on:

1) Depth of while loop nesting, and;
2) Size of the statement.

Case (3): Suppose that S = S1; S2. By the induction
hypothesis, the theorem holds for both S1 and S2. Let
f1 = (Int

op
M (S1, V)) ↓ C , g1 = Intden

M (Apply(C,S1)), V
′)

and let fc
1 (s) = f1(s) ⇓ c and:

g
c,q
1 (s) = g1(s⊛ {limit 7→ c⊕ q, slice 7→ q})

Define h
c,q
1 from g

c,q
1 as above. Define f2, g2, f

c
2 , g

c,h
2

and h
c,q
2 from S2 in the same way.

Let t be any element of f(s). By definition, t is a minimal
history. We claim that q ++ (t ↓ C ⇓ c) ∈ hc,q(s).

By definition, there exists a history t1 ∈ f1(s) and a
history t2 ∈ f2(Final(t1)) such that t = t1 ++ t2. Let
q1 = q ++ (t1 ↓ C ⇓ c) and c1 = c⊖ (t1 ↓ C ⇓ c).

By Lemma 5.10 c⊕ q = c1 ⊕ q1.

There are three subcases to consider:

Subcase (i): Suppose t1 ↓ C 6≪ c. Then t ↓ C ⇓ c =
(t1 ↓ C ++ t2 ↓ C) ⇓ c = t1 ↓ C ⇓ c ∈ fc

1(s). So, by the
induction hypothesis for S1: q ++ (t ↓ C ⇓ c) ∈ h

c,q
1 (s).

This is a proper state, so we must have g
c,q
1 (s) terminat-

ing with q1 as a possible final value for slice. Let s′1 be
a final state containing this value. Then: g2(s

′
1) = {s′1}

since the guarded statement terminates immediately. So
q ++ (t ↓ C ⇓ c) ∈ h

c1,q1

2 (s′1) ⊆ hc,q(s) as required.

Subcase (ii): Suppose t1 ↓ C ≪ c and t1 is non-
terminating. Then t1 ↓ C ends in ⊥ and:

t ↓ C ⇓ c = (t1 ↓ C ++ t2 ↓ C) ⇓ c = t1 ↓ C ⇓ c ∈ f
c
1 (s)

So, by the induction hypothesis for S1: q ++ (t ↓ C ⇓ c) ∈
h
c,q
1 (s). This ends in ⊥, so g

c,q,
1 (s) must abort (since this

is the only way to get ⊥ into h1), and there is some c′ < c

such that gc′,q
1 (s) terminates with the terminating history

q′1 = butlast(q ++ (t ↓ C ⇓ c)) as a possible final value
for slice. Let s1 be a final state in which slice has the
value q′1. As in the proof of Theorem 5.14 we have q1 6≪
c′ ⊕ q, since any increase in c′ leads to non-termination.

So g
c′,q
2 (s1) = {s1} and therefore s1 ∈ gc′,q(s). Since g

aborts on any larger c′, in particular c, we must have
q1 ++ 〈⊥〉 ∈ hc,q(s). But q1 ++ 〈⊥〉 = q ++ (t ↓ C ⇓ c), so
we have q ++ (t ↓ C ⇓ c) ∈ hc,q(s) as required.

Subcase (iii): Suppose t1 ↓ C ≪ c and t1 is terminating.
Then (t ↓ C) ⇓ c = ((t1 ↓ C) ++ (t2 ↓ C)) ⇓ c and
t2 ∈ f2(Final(t1)). Let q1 = q ++ (t ↓ C) ⇓ c and c1 =
c⊖ (t1 ↓ C). Then:

q ++ (t ↓ C) ⇓ c = (q ++ (t ↓ C) ⇓ c) ++ (t2 ↓ C) ⇓ c1

= q1 ++ (t2 ↓ C) ⇓ c1

By the induction hypothesis for S1, q1 ∈ h
c,q
1 (s). Let

s1 = Final(t1). By the induction hypothesis for S2: q1 ++
(t2 ↓ C) ⇓ c1 ∈ h

q1,c1
2 (s1). By examining the definitions

of h and g on a sequential composition it is clear that
h
q1,c1
2 (s1) ⊆ hc,q(s), so q ++ (t ↓ C) ⇓ c ∈ hc,q(s) as

required.

Putting these subcases together, we have proved that
q ++ fc(s) ⊆ hc,q(s).

For the converse, let q ++ t be any element of hc,q(s). (By
Lemma 5.12, every element of hc,q(s) is of this form). We
claim that t ∈ f(s).

The final value of slice after executing Apply(C,S1) fol-
lowed by Apply(C,S2) must be the initial value (which is
q) plus some component from the execution of S1, plus
a further component from the execution of Apply(C,S2).
So we must have histories t1 and t2 such that t = t1 ++ t2
and q ++ t1 ∈ h

c,q
1 (s). Let q1 = q ++ t1 and c1 = c ⊖ t1.

By the induction hypothesis for S1, we have t1 ∈ fc
1 (s).

Let t′1 ∈ f1(s) be such that t1 = t′1 ↓ C ⇓ c.

Again, there are three subcases:

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 25

Subcase (i): Suppose t1 6≪ c. Then at some point in the
execution of Apply(C,S1) we appended an element to
slice which caused the condition slice ≪ limit to become
false. Due to the guard, no further statements are exe-
cuted, so the final state is the state which was appended
to slice. Let s1 = Final(t1). Then g

c1,q1

2 (s1) = {s1} due
to the guards. So t2 = 〈〉 and q ++ t = q1.

Let t′2 be any element of f2(Final(t1)). Then: (t′1 ++ t′2) ↓
C ⇓ c is in fc(s). Now:

(t′1 ++ t′2) ↓ C ⇓ c = (t′1 ↓ C) ⇓ c

since t′1 ↓ C = t1 6≪ c. So q ++ t ∈ q ++ fc(s) as required.

Subcase (ii): Suppose t1 ≪ c and g
c,q
1 (s) aborts. Then

there exists a maximal c′ < c such that g
c′,q
1 (s) termi-

nates in a state where slice has the value q ++ butlast(t1)
and t1 = butlast(t1) ++ 〈⊥〉. So t′1 must be non-
terminating and therefore t′1 ∈ f(s), so t = t1 ∈ fc(s) as
required.

Subcase (iii): Suppose t1 ≪ c and g
c,q
1 (s) terminates. Let

s1 be a final state in g
c,q
1 (s) such that slice has the value

q ++ t1 and such that q ++ t1 ++ t2 ∈ h
q1,c1
2 (s1). There-

fore, by the induction hypothesis for S2, t2 ∈ f
c1
2 (s1),

so t1 ++ t2 ∈ fc(s) as required, provided it is a minimal
element. To prove that t1 ++ t2 is minimal we need to
carry out the proof of the equality of q ++ fc(s) and
hc,q(s) by induction on the lengths of elements. Prove
for each k that the subset of elements of q ++ fc(s) of
length k is equal to the subset of elements of hc,q(s)
of length k. Now, if t2 ∈ f

c1
2 (s1) then q ++ t must be

a minimal element of q ++ fc(s) since otherwise it is an
extension of a smaller element. By induction, this smaller
element must be in hc,q(s). But then q ++ t would
not be a minimal element of hc,q(s), which contradicts
Theorem 5.14.

This completes the proof for Case (3).

Case (4): Suppose that S = if B then S1 else S2 fi If B is
true initially (i.e. s ∈ intM (B, V)) then by the induction
hypothesis for S1:

q ++ f
c(s) = q ++ f

c
1(s) = h

c,q
1 (s) = h

c,q(s)

and similarly if B is false initially. The result follows from
the semantics for if.

Case (5): Suppose that S = while B do S1 od. By the
induction hypothesis, the result holds for every approx-
imation of the while loop (since each approximation,
although it may be larger than S, has a lower depth of
while loop nesting). For each k > 0 let:

fk(s) = Int
op
M (while B do S1 od

k)(s)

f
c
k(s) =DF fk(s) ↓ C ⇓ c

g
c,q
k (s) = Intden

M (Apply(C,while B do S1 od
k)), V ′)

(s⊛ {limit 7→ c⊕ q, slice 7→ q})

and define h
c,q
k from g

c,q
k in the usual way.

By the induction hypothesis: q ++ fc
k(s) = h

c,q
k (s) for

each k > 0. By the definition of the operational semantics
for while:

f
c(s) =

(

(

⊔

k<ω

fk(s)
)

↓ C
)

⇓ c

By Lemma 5.5, f(s) is a finitely branching history set,
so f(s) ↓ C is also finitely branching. Each branch in
f(s) ↓ C ⇓ c is finite (since there are a finite number
of labels, and there can be no more than c(L) elements
of a history with label L). So f(s) ↓ C ⇓ c is a finite
set of histories: since the corresponding tree is finitely
branching with a finite maximum depth. Each history in
f(s) ↓ C ⇓ c appears in fc

k(s) for some k. Let k1 be the
largest such k. Then fc(s) = fc

k1
(s) and this holds for all

k > k1.

For gc,q(s), either ⊥ ∈ g
c,q
k (s) for all k, or there exists

a k2 such that gc,q(s) = g
c,q
k2

(s) and this holds for all
k > k2.

Pick any k larger than both k1 and k2 and apply the
induction hypothesis for this k. We have:

q ++ f
c(s) = q ++ f

c
k(s) = h

c,q
k (s) = h

c,q(s)

Case (6): Suppose that S = (S1 ⊓ S2). There are three
subcases to consider:

Subcase (i): Suppose that 〈⊥〉 ∈ fc
1 (s). Then fc

1 (s) =
{〈⊥〉} since it is a set of minimal elements. Then, by the
induction hypothesis for S1, hc,q

1 (s) = q ++ {〈⊥〉} and by
the denotational semantics for choice we have hc,q(s) =
q ++ {〈⊥〉}. By the operational semantics for choice, we
have 〈⊥〉 ∈ fc(s), and so fc(s) = {〈⊥〉} and the result
follows.

Subcase (ii): Suppose that 〈⊥〉 ∈ fc
2 (s). The result

follows as for Subcase (i).

Subcase (iii): Otherwise, assume 〈⊥〉 /∈ fc
1 (s) and 〈⊥〉 /∈

fc
2 (s). We claim that fc(s) = fc

1 (s) ∪ fc
2 (s). To prove

this it is sufficient to show that fc
1 (s) ∪ fc

2 (s) is a set of
minimal elements. Assume for contradiction that there
exists a terminating history t and history t1 such that
t ++ 〈⊥〉 ∈ fc

1 (s) ∪ fc
2 (s) and t ++ t1 ∈ fc

1 (s) ∪ fc
2 (s).

From the assumption, we must have t 6= 〈〉, so since t is
terminating it must have a first element. Let 〈L, t〉 = t[1].
Assume, w.l.o.g., that t ++ 〈⊥〉 ∈ fc

1 (s). At this point we
make use of the crucial fact that the set of labels in S1

is disjoint from the set of labels in S2. Since L is a label
in S1, it cannot appear in S2. So, no history in fc

2 (s) can
start with a state labelled with L. In particular, we cannot
have t ++ t1 ∈ fc

2 (s) so we must have t ++ t1 ∈ fc
1 (s).

But then, t ++ t1 is not a minimal element of fc
1 (s) (since

t ++ 〈⊥〉 ∈ fc
1 (s)) which is a contradiction.

Similarly, we can prove that hc,q(s) = h
c,q
1 (s) ∪ h

c,q
2 (s),

using Theorem 5.14

This completes the proof. �

6 Discussion

In this section we present some example programs and
show how their slices are calculated. We also show how
the new semantics is able to cope with the example pro-
grams which proved so problematic with the various other
attempts to define a semantics for slicing.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 26

6.1 Operational Semantics

Our operational semantics defines the meaning of a pro-
gram to be a function which maps each initial state to
the (finite or infinite) sequence of labelled states that the
program passes through as it executes. Such a sequence
is called a history. With this semantics we can distinguish
between different non-terminating programs.

Our definition of slicing has the property that any ob-
server who observes the value of the variable of interest at
the slice point will not see any difference between the se-
quence of values produced by the original program and the
sequence produced by the slice: with the exception that the
slice may produce more values, and may terminate, in cases
where the original program does not terminate. To see why
the original program may produce more values, consider
Weiser’s example program in Section 2.1 and suppose that
we are slicing on the value of X at line 3. Clearly the code
labelled “perform any function not involving X here” can be
deleted. If this code does not terminate, then the observer
will not see any value of X at line 3 in the original program
(since execution will never reach that line), but may observe
X with the value 1 in the slice.

This process of observing the values of certain variables
at certain points in the program, while abstracting away
from the rest of the behaviour of the program, is precisely
what is needed to analyse the interactive behaviour of a
program. If we slice on all the variables involved in each
interaction at each point in the program where the inter-
action occurs, then the slice will exhibit all the interactive
behaviours of the original program. So we can use slicing
to prove that an interactive program is a correct imple-
mentation of an interactive specification, or to derive the
specification of a program from its source code using the
methods given in [5,9,12].

To motivate the definition of the semantic relation (semi-
refinement) on sequences of labelled states, consider the
program P:

while true do L1 : y := 1 od; L2 : x := 2

For an initial state space of {y} this program will have the
following operational semantics:

〈〈L1, {y 7→ 1}〉, 〈L1, {y 7→ 1}〉, 〈L1, {y 7→ 1}〉, . . . 〉

A proposed slice of P for x at label L2 is program S:

L2 : x := 2

This has semantics 〈〈L2, {x 7→ 2}〉〉. The projection of the
semantics for P on x at label L2 will delete an infinite
sequence of states, so this sequence is replaced by 〈⊥〉.
This example shows why the slicing relation on histories
must allow 〈〈L2, {x 7→ 2}〉〉 as a valid slice of 〈⊥〉. More
generally, since the assignment could be any statement, the
relation must allow any history as a valid slice of 〈⊥〉. These
considerations show that the semantic slicing relation is
indeed semi-refinement (see Section 4.5.1).

6.2 Example Programs

We now consider the examples discussed earlier which
proved problematical for previous definitions of a semantics
for slicing.

For the Weiser example W1 in Figure 2, the operational
semantics will include the state 〈L2, X 7→ 1〉 when X is
true, and so X will have the value 1 at the write statement
on this initial state. So this statement cannot be sliced away.
For example W2 in Figure 3, the projection of the loop at L3

is 〈⊥〉, so the statement at L4 has no effect on the semantics
and can be sliced away when we are slicing at the end of the
program. This is in accordance with Weiser’s discussion and
confirms that semi-refinement does indeed correctly model
Weiser slicing (unlike all the other semantic relations we
have discussed).

6.2.1 Non-termination

(a) Program P9

while y > 0 do

L2 : y := y + 1;
L3 : y := y − 2 od;

L : x := 1

(b) Program P10

while y > 0 do

L2 : y := y + 1 od;
L : x := 1

Figure 10. Labelled slicing examples

Now consider programs P1 and P2. The programs P9

and P10 in Figure 10 are P1 and P2 with labels added.

Suppose we are slicing on x at label L. Program P9

terminates, so every history consists of a finite sequence of
states labelled L2 or L3, followed by a single state labelled L
in which x has the value 1. Program P10 does not terminate
when y > 0 initially, so the history is an infinite sequence
of states labelled L2 and no state labelled L. The projection
of this infinite sequence is therefore the singleton sequence
〈⊥〉.

So, P10 is not a valid slice of P9, but P9 is a valid
(semantic) slice for P10, as required.

6.2.2 Unreachable code

Figure 11 shows labelled copies of P7 and P8 from Figure 8
where we are slicing on y at L. For program P11, the state-

(a) Program P11

if true

then L1 : skip

else L2 : x := 1 fi;
L : y := x

(b) Program P12

while true do

L1 : skip od;
L2 : x := 1;
L : y := x

Figure 11. Unreachable Code

ment L2 : x := 1 is never executed, so appears in none of
the histories. This program terminates with the assignment
y := x, so if we slice on this statement the projected history
contains a single state in which y contains the initial value of
x. So, as with the lazy semantics, transfinite semantics and
trajectory semantics, a valid slice is L : y := x.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 27

For P12 the history is an infinite sequence of states
labelled L1. The projection of this history on L is 〈⊥〉 so
any program is a valid slice, including L : y := x. As
explained in Section 3.2.5, in the various forms of lazy
semantics, transfinite semantics and trajectory semantics,
the statement L2 : x := 1 must be included in all slices. For
example, in the trajectory semantics, every finite trajectory
includes the statements L2 : x := 1 and L : y := x, so the
projection of every trajectory on L assigns the value 1 to y,
so any syntactic slice must also ensure that y is assigned
the value 1 in the trajectory semantics. This is only possible
if the slice also includes the statement L2 : x := 1 since
otherwise y will be assigned an incorrect value. So, in the
lazy or transfinite semantics, every slice must include the
unreachable statement L2 : x := 1. With our semantics,
every history for P8 consists of an infinite sequence of states
labelled L1 so the projection on L is simply 〈⊥〉 and any
program is a valid slice. In particular, the program L : y := x
is a valid slice on y at L, and the unreachable statement
L2 : x := 1 can be deleted, as required.

A slightly more complex example is Figure 12. The only

code which assigns to y here
if y = 0

then while true do L1 : skip od; L2 : x := 3
else L3 : x := 4 fi;

L : y := x

Figure 12. Unreachable Code

assignment to x which can reach label L is L3 : x := 4, so a
valid semantic slice in the our operational semantics is L :
y := 4. Note that with the test of y removed, the preceding
code which assigns to y can also be removed. With any of
the lazy, transfinite or trajectory semantics the assignment
x := 3 cannot be removed, so the test of y and therefore the
code which assigns to y all have to be preserved in any slice.

6.3 Denotational Semantics

The WSL denotational semantics models a program as a
function which maps each initial state to a final state, or set
of final states. An interactive program can be modelled by
defining the input as a sequence of events, and the output
as a sequence of interactions. This model will work provided
that the program eventually terminates. But there are many
interactive programs which are designed to run forever
without terminating normally. In effect, the output of the
program is an infinite sequence of interactions with the
environment. But the denotational semantic model cannot
handle processing an infinite sequence of input data or gen-
erating an infinite sequence of output. This would appear
to render the model unsuitable: but in reality, no program
can actually process an infinite amount of data, so it is
sufficient to consider the set of all finite sequences of in-
teractions which can occur up to some (arbitrary) abnormal
termination event. We cannot place any upper limit on the
number of interactions, but if we can prove that the program
correctly generates all finite sequences of interactions, then we
can be satisfied that it will work in practice.

For a non-terminating slice of a non-terminating pro-
gram, the sequence of values produced by the program and
the sequence produced by the slice may both be infinite, but
it is sufficient to examine all finite prefixes of the infinite
sequences. If the observer terminates both programs after
a certain (finite) number of interactions then the two finite
sequences can be compared. If the results are correct for an
observer with an arbitrarily large, but still finite, amount of
patience, then we may assume that the slice is correct.

This discussion motivates our scheme of modifying the
program by providing an extra parameter (the limit pa-
rameter) which indicates the number of interactions we
are interested in. The modified program will terminate
immediately on reaching that number of interactions. If this
modified program gives correct results for every limit value,
then we may assume that the original program is correct for
all practical purposes.

Consider the following non-terminating program which
reads a sequence of integers from the input port and prints
the running totals for the sum and product of the integers
read so far. The sum is send to output port1 and the product
to port2.

sum := 0;
prod := 1;
while true do

read(var input, n);
sum := sum + n;
print(“Sum = ”, sum var port1);
prod := prod ∗ n;
print(“Product = ”, prod var port2) od

The program interacts with the environment in three places:
the statement read(input, n) reads a number from the input
port and each of the two print statements writes to an output
port.

Suppose we are interested in the interactions of this
program with the ports input and port1. To analyse these
interactions, we label the read statement L1 and label the
first print statement L2 and use the following slicing crite-
rion:

C = {L1 7→ {input}, L2 7→ {port1}}

The function Apply(C,S), when applied to the program
above, produces the following terminating program:

if slice ≪ limit then sum := 0 fi;
if slice ≪ limit then prod := 1 fi;
while slice ≪ limit do

if slice ≪ limit

then read(var input, n);
slice := slice ++ 〈〈L1, 〈“input”, input〉〉〉 fi;

if slice ≪ limit then sum := sum + n fi;
if slice ≪ limit

then print(“Sum = ”, sum var port1);
slice := slice ++ 〈〈L2, 〈“port1”, port1〉〉〉 fi;

if slice ≪ limit then prod := prod ∗ n fi;
if slice ≪ limit

then print(“Product = ”, prod var port2) fi od

The apply function adds a lot of code to the program, but
most of this can be removed via automated transformations.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 28

Applying FermaT’s semantic slice transformation [49], and
slicing on the final value of the variable slice, we get:

if slice ≪ limit then sum := 0 fi;
while slice ≪ limit do

read(var input, n);
slice := slice ++ 〈〈L1, 〈“input”, input〉〉〉;
if slice ≪ limit then sum := n + sum fi;
if slice ≪ limit

then print(“Sum = ”, sum var port1);
slice := slice ++ 〈〈L2, 〈“port1”, port1〉〉〉 fi od

Removing the annotations gives us a simplified non-
terminating program which is semantically equivalent to the
original program in its interactions via input and port1:

sum := 0;
while true do

read(var input, n);
sum := sum + n;
print(“Sum = ”, sum var port1) od

Our annotation process converts a non-terminating loop
into a loop which may terminate: but the whole program
terminates when any loop is forced to terminate. The fi-
nite trajectory semantics [50] also converts non-terminating
loops to terminating loops, but then allows execution to
continue after the loop. This means that code which appears
after a non-terminating loop can affect the semantics and
may have to be included in any slice (even though such code
cannot be executed). In contrast, when our annotated code
causes termination of an otherwise non-terminating loop,
the whole program is terminated, so any non-executable
code in the original program is still non-executable in the
annotated program: this can be clearly seen in the examples
in the Section 6.2.2. The finite trajectory semantics also
allows a non-terminating program as a valid slice of a
terminating program.

6.4 Slicing Nondeterministic Programs

Extending the programming language to include nondeter-
minism has some interesting results.

The operational semantics for the nondeterministic lan-
guage maps each initial state to the set of possible histories,
while the denotational semantics maps each initial state to
the set of possible final states. If the denotational semantics
includes ⊥ in the set of final states, then it is defined to
include all other states. The corresponding requirement for
the operational semantics is: If the operational semantics
includes a history ending in ⊥ then it is defined to include
all extensions of this history. In this section we discuss the
interactions between slicing and nondeterministic choice.
The statement (S1 ⊓ S2) will execute one of the statements
S1 or S2.

Note that any program of the form (S ⊓ abort) is equiv-
alent to abort in both operational and denotational seman-
tics. This is because any component of a nondeterministic
choice is a valid refinement of the choice. So (S ⊓ abort) is
refined by abort. It is also a refinement of abort (because
every statement is a refinement of abort), so therefore it
must be semantically equivalent to abort.

Example 1

First, consider the program L1 : x := 1; abort. Slicing on
x at L1 gives this projected semantics:

{〈〈L1, {x 7→ 1}〉,⊥〉}

The slice therefore has to include the statement L1 : x := 1.

Example 2

Now consider the program:

(L1 : x := 1; abort ⊓ L2 : x := 2; abort)

Slicing on x at L1 gives this projected semantics:

{〈⊥〉, 〈〈L1, {x 7→ 1}〉,⊥〉}

plus all the extensions of 〈⊥〉. The history 〈〈L1, {x 7→ 1}〉,⊥〉
is an extension of 〈⊥〉, so this set is identical to {〈⊥〉}, plus
its extensions. So the projected semantics is identical to the
semantics for abort, and the statement L1 : x := 1 does not
have to be included in the slice. Similarly a slice on x at L2

does not have to include L2 : x := 2. However, if we slice on
both labels simultaneously then the projected semantics is:

{〈〈L1, {x 7→ 1}〉,⊥〉, 〈〈L2, {x 7→ 2}〉,⊥〉}

and any slice for this criterion must include both assign-
ments.

This example illustrates the fact that a slice on two labels
simultaneously may have to include statements which are
not needed when slicing on either label separately. In gen-
eral, taking the union of slices on two separate labels does
not necessarily give a slice for both labels simultaneously.

Example 3

Consider the program:

(L1 : x := 1; abort ⊓ L2 : x := 2; L3 : x := 3; abort)

The operational semantics gives this history set:

f(s) = {〈〈L1, {x 7→ 1}〉,⊥〉,

〈〈L2, {x 7→ 2}〉, 〈L3, {x 7→ 3}〉,⊥〉}

For any slicing criterion C on a single label, the projection
of the operational semantics for f is {〈⊥〉}. In other words,
if we slice on just L1, L2 or L3 then the result is abort. But
if we slice on L1 and L2 the result is:

f(s) = {〈〈L1, {x 7→ 1}〉,⊥〉, 〈〈L2, {x 7→ 2}〉,⊥〉}

Again, the result of slicing on two labels simultaneously is
not the same as combining the slices for each label.

In the denotational semantics we annotate the program
by appending a new value to the new variable slice at each
slice point. The Apply function also inserts tests of the form
slice ≪ limit at various points in the program.

This example illustrates the more precise test slice ≪
limit instead of the simple test ℓ(slice) < N . The problem
is that a simple length limit will not be able to “detect” the
statement at label L3 when we are slicing on all three labels
simultaneously.

If the maximum length is 1 then the statement will
terminate as soon as L2 has been executed, while if the
length is 2 then the L1 branch will cause the program to

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 29

abort. So, with a simple integer length limit ℓ(slice) < N
there is no initial value for N for which the program:

(L1 : x := 1; abort ⊓ L2 : x := 2; abort)

is different from the program:

(L1 : x := 1; abort ⊓ L2 : x := 2; L3 : x := 3; abort)

This example shows why the annotation must add a test
which can specify a different limit for each label in the
slicing criterion. For example, the limit function {L1 7→
1, L2 7→ 2, L3 7→ 1} will ensure that all three labels are
included in states appended to slice, so the program with
L3 : x := 3 deleted will not be considered as a valid slice
when we are slicing on all three labels. The limit of 2 on L2

means that the execution of L2 : x := 2 will not cause an
enforced termination when slice is tested just before L3, so
the program will execute L3 : x := 3. The latter statement
has a limit of one, so termination is enforced before the
following abort can be executed. Note that with this limit
function, the annotated program is guaranteed to terminate,
so there is always a final state for which we can check the
value of the variable slice.

6.5 More Non-terminating Programs

Define the infinite loop:

loop =DF while true do skip od

In the denotational semantics world, loop is equivalent to
abort, but the operational semantics of the two programs
are different. The semantics of loop maps each initial state s
to the infinite sequence:

〈〈L0, s〉, 〈L0, s〉, 〈L0, s〉, . . . 〉

while the semantics of abort maps each initial state s to
the sequence 〈⊥〉. In both semantics, abort is refined by
any program, but under operational semantics loop is only
refined by itself.

As with abort, however, loop satisfies the relation:
loop; S ≈ loop for any statement S: so (unlike the
transfinite semantics, the lazy semantics and the finite tra-
jectory semantics) there is no possibility of code after a non-
terminating loop having any effect on the semantics of the
program as a whole.

For any initial state s and any slicing criterion C which
does not include L0 in its domain, the projection of loop on
C is 〈⊥〉. So, on every slicing criterion which excludes L0,
the projection of loop is the same as the projection of abort.

The projection of the semantics of loop; end : skip

on the criterion C = {end 7→ X} is 〈⊥〉 for every initial
state. But the projection of end : skip, for initial state s is
〈〈end, s〉〉. If we want to be able to “slice away” the infinite
loop, then the slicing relation must allow 〈〈end, s〉〉 as a
valid slice of 〈⊥〉. Of course, the skip statement could be
an arbitrary statement, so the slicing relation must allow
any statement as a valid slice of 〈⊥〉.

Another example is the program S1:

L1 : x := 4; while true do L0 : skip od; L2 : x := 5

where we are slicing on the value of x at L1 and L2. Again,
we would like to “slice out” the middle loop and get S2:

L1 : x := 4; L2 : x := 5

as a valid slice. The projection of S1 is 〈〈L1, {x 7→ 4}〉,⊥〉
for each initial state, while the projection of S2 is 〈〈L1, {x 7→
4}〉, 〈L2, {x 7→ 5}〉〉. Here, the projection of S2 is formed
from the projection of S1 by replacing the trailing ⊥ by a
labelled state.

If we replace the statement L2 : x := 5 in both S1 and
S2 by any arbitrary statement, then we can see that the
semantics for the modified S2 could be any extension of
the semantics for the modified S1. In other words, the slice
could be any semi-refinement of the original program (as
far as the semantic relation is concerned). This means that,
just as in [20], the semantic relation for slicing is semi-
refinement.

6.5.1 Another Non-terminating Program

Our final example is slicing in the middle of a non-
terminating program. This example is based on one pub-
lished in [52], which was based on an example in [22].
See [53] for a detailed discussion of the original example.
We have modified the program to convert it to a non-
terminating program with the slice point in the middle.

Suppose we are slicing on the value of x at label L in the
program S, which is:

while true do

i := y(x);
c := z(x);
while p(i) do

if q(c)
then x := f ; c := g(i) fi;

i := h(i) od;
L : skip od

A dataflow algorithm for slicing will note that x is
assigned in an if statement with condition q(c), so there is
a control dependency on this condition. c is also assigned
in the if statement, which is inside a loop, so there is a
data dependency on the assignment to c. So any dataflow
based slicing algorithm will include the assignment to c in
the slice. Similarly, any slicing definition which is based on
the dataflow will insist that the assignment to c be included
in any valid slice.

However, in practice the assignment to c cannot affect
the value of x. If q(c) is false on the first iteration of the
inner loop (assuming the loop executes at all), then c does
not get modified by the loop and so neither does x. On the
other hand, if q(c) is true, then x gets assigned the constant
value f . Any further assignments to x are to the same value
and so have no effect. So changes to the value of q(c) on
subsequent iterations of the loop will not affect the value of
x at L.

Our slicing criterion is: C = {L 7→ {x}}, so the annotated
program Apply(C,S) is:

while slice ≪ limit ∧ true do

if slice ≪ limit then i := y(x) fi;
if slice ≪ limit then c := z(x) fi;

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 30

while slice ≪ limit ∧ p(i) do

if q(c)
then if slice ≪ limit then x := f ; c := g fi fi;

if slice ≪ limit then i := h(i) fi;
if slice ≪ limit

then slice := slice ++ 〈〈L, state(C(L))〉〉 fi od

Use the invariant slice ≪ limit to simplify the loop body:

while slice ≪ limit do

i := y(x);
c := z(x);
while slice ≪ limit ∧ p(i) do

if q(c)
then x := f ; c := g(i) fi;

i := h(i) od;
slice := slice ++ 〈〈L, x〉〉 od

Applying FermaT’s semantic slicer [10,49] to this pro-
gram to slice on the final value of slice we get:

while slice ≪ limit do

i := y(x);
c := z(x);
if slice ≪ limit ∧ p(i) ∧ q(c)

then x := f fi;
slice := slice ++ 〈〈L, x〉〉 od

which corresponds to the following un-annotated program,
which we will call S′:

while true do

i := y(x);
c := z(x);
if p(i) ∧ q(c)

then x := f fi;
L : skip od

Note that the inner while loop has been converted to a
simple if statement, and that the assignment to c inside the
inner loop has been deleted.

Computing the operational semantics for S and S′, pro-
jecting the semantics on C and determining directly that
the projected semantics for S′ is a semi-refinement of the
projected semantics for S, would appear to be a much
harder task than computing the denotational semantic slice
of the annotated program. This is partly because the de-
notational semantic slice process can make use of any valid
WSL transformations: including loop unrolling and constant
propagation.

7 Applications of Semantic Slicing

If we drop the syntactic requirement from Weiser’s defini-
tion of slicing (to define a semantic slice), then any statement
is a valid slice of a non-terminating statement. This “seman-
tic freedom” is necessary for removing irrelevant code from
programs. A practical example of removing irrelevant code
is removing error handling code: suppose we are interested
in determining the behaviour of a program under normal
(non error) conditions. In commercial systems, such as large
commercial assembler systems, error handling code can
amount to 60% or more of the source code in a module [11,
49]. Before a program has been analysed, it can be difficult to
determine which parts of the program are purely concerned

with error handling, since the error handling code can add
a large number of irrelevant control flow paths: this is
especially true for unstructured assembler code. By the time
control flow reaches an instruction which causes abnormal
termination (ABEND), or code to display an error message,
we can be certain that we are within the error handling code.
If these statements are replaced by abort statements, then
the result is an abstraction of the original program which is
nevertheless equivalent to the original under “normal” (non
error) input states. Subsequent semantic slicing is able to
eliminate the error handling code and any preceding tests
for error conditions. For example, consider the statement:

if B then S else . . . error . . . fi

where the condition B tests for a particular error. This is
abstracted to:

if B then S else . . . abort . . . fi

which is equivalent to:

if B then S else abort fi

If we slice this particular abort statement to the statement S
then we get:

if B then S else S fi

which is equivalent to S: and we have eliminated the error
handling code and the preceding test for the error. In [49] we
show that much of the above process can be automated and
applied to unstructured assembler to produce an abstract
version of the code: on average a 6,000 line assembler
listing is condensed down to a 132 line high level language
abstraction.

7.1 Analysing a Non-Terminating Interactive Program

By slicing on some or all of the points of interaction of
an interactive program we can analyse the behaviour of
a non-terminating program using the FermaT Maintenance
Environment (FME) which can be downloaded from

http://www.gkc.org.uk/fermat.html

This example uses a regular action system and loops
with multiple exits. In [2] we show that these constructs
can be transformed into equivalent code using while loops,
so the equivalence proved in Section 5 is still valid.
A regular action system is denoted by the keywords
actions. . . endactions and consists of the name of the start-
ing action followed by a list of actions. Each action has a
name and a body (a statement sequence). Execution of any
action body will always lead to an action call: so no call can
ever return and a call acts in the same way as a goto in other
languages. A call of the special action Z (which has no body)
causes the whole action system to terminate immediately,
with control passing to the next statement after the action
system (if any).

var 〈FL1 := 0,FL2 := 0〉 :
actions Inside :
Loop1 ≡

if msg = “” then call Again fi;
if FL2 = 0 ∨ last 6= msg

then call Next

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 31

else call More fi end

Next ≡
if FL1 = 1

then !P Write(last, total var output) fi;
FL1 := 1;
total := 0;
call More end

More ≡
total := total + count;
FL2 := 1;
call Loop end

Loop ≡
last := msg;
!P Read(var msg, count, input);
call Loop1 end

Again ≡
if FL2 = 1

then !P Write(last, total var output) fi;
call Inside end

Inside ≡
FL1 := 0; FL2 := 0;
last := msg;
!P Read(var msg, count, input);
call Loop1 end endactions end

This regular action system does not contain a call Z so it
will never terminate. The program interacts with the envi-
ronment via the Read and Write operations (the !P denotes
a call to a procedure which is external to this module). The
FermaT maintenance environment is based on denotational
semantics, so if we analyse this program using FME we
can transform it to the program abort. This is because FME
preserves the behaviour of the program on termination, but
this program never terminates.

The program makes extensive use of labels and unstruc-
tured branches, and also uses two flag variables FL1 and
FL2 to direct control flow. This is typical of assembler code,
particularly embedded assembler.

Start

More

Loop1

Again

Next

Loop Inside

Figure 13. Action System Call Graph

We are interested in the outputs produced by the pro-
gram on interaction with the environment, so we annotate
the Write calls as follows:

!P Write(last, total var output);
slice := slice ++ 〈〈last, total〉〉;
if ℓ(slice) > limit then call Z fi

With these annotations, the denotational semantics of the
annotated program preserves the interactive behaviour of
the original program, as proved in Section 5.

The first step is to restructure the action system into
a set of nested loops and if statements. FME includes a
transformation Collapse Action System which uses heuris-
tics to guide the application of other transformations
to achieve this restructuring. The output produced by
Collapse Action System is:

var 〈FL1 := 0,FL2 := 0〉 :
do FL1 := 0;

FL2 := 0;
last := msg;
!P Read(var msg, count, input);
do if msg = “”

then if FL2 = 1
then !P Write(last, total var output);

slice := slice ++ 〈〈last, total〉〉;
if ℓ(slice) > limit

then exit(2)
else exit(1) fi

else exit(1) fi fi;
if FL2 = 0 ∨ last 6= msg

then if FL1 = 1
then !P Write(last, total var output);

slice := slice ++ 〈〈last, total〉〉;
if ℓ(slice) > limit

then exit(2) fi fi;
FL1 := 1;
total := 0 fi;

total := (total + count);
FL2 := 1;
last := msg;
!P Read(var msg, count, input) od od end

The next step is to further restructure the program in order
to eliminate flag variables where possible. This is achieved
by transforming the code to move flag tests closer to the
places where the flag is set: duplicating small amounts
of code if necessary. Then Constant Propagation can be
applied to eliminate tests and assignments where the flag
variable has a known value. If all references to the flag
can be eliminated in this way, then the flag variable can
be removed: since it is a local variable.

A transformation Flag Removal uses heuristics to guide
the application of other transformations to eliminate flags.
In this case, both flags could be removed, with the following
result:

do last := msg;
!P Read(var msg, count, input);
if msg 6= “”

then total := 0;
total := count;
do last := msg;

!P Read(var msg, count, input);
if msg = “”

then !P Write(last, total var output);

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 32

slice := slice ++ 〈〈last, total〉〉;
if ℓ(slice) > limit

then exit(2)
else exit(1) fi fi;

if last 6= msg

then !P Write(last, total var output);
slice := slice ++ 〈〈last, total〉〉;
if ℓ(slice) > limit

then exit(2) fi;
total := 0 fi;

total := (count + total) od fi od

The result still has some duplicated statements, particularly
the Write calls and assignments to slice and count. These
were merged by applying further transformations using the
FME graphical front end to select and apply each transfor-
mation. The transformation engine checks the validity of
each transformation before it is applied. The result is:

do !P Read(var msg, count, input);
do if msg = “”

then exit(1) fi;
total := count;
last := msg;
!P Read(var msg, count, input);
while last = msg ∧ msg 6= “” do

total := (count + total);
!P Read(var msg, count, input) od;

!P Write(last, total var output);
slice := slice ++ 〈〈last, total〉〉;
if ℓ(slice) > limit

then exit(2) fi od od

We can now delete the annotations and convert the inner
loop to a while loop to give a transformed non-terminating
program which is guaranteed to be equivalent to the original
program in all of its external behaviour:

do !P Read(var msg, count, input);
while msg 6= “” do

total := count;
last := msg;
!P Read(var msg, count, input);
while last = msg ∧ msg 6= “” do

total := (count + total);
!P Read(var msg, count, input) od;

!P Write(last, total var output) od od

This restructured program can then be transformed into a
specification, if required, (although such a process is beyond
the scope of this paper). See [5,9,54].

The program reads a sequence of message and count
values from the input stream. The stream of data may be
split into groups where all the message for each element in
the group is the same. Groups may also be separated by one
or more empty messages (whose count values are ignored).
The outermost loop processes each group separated by
empty messages. The next inner loop processes a single
group where all message values are the same, while the
innermost loop processes each data element. The message
and total count for each group is written to the output
stream.

8 Conclusion

The interactive behaviour of a program can be modelled
as a semantic slice, where the points of interest are the
statements which interact with the environment and the
variables of interest are all the variables involved in each
interaction. Many interactive systems are designed to run
continuously, without terminating: so there is a practical
need for a clear formal definition of program slicing for non-
terminating programs.

In this paper we have reviewed many attempts by a
number of authors to define a suitable semantic relation
which precisely captures the meaning of a program slice,
and therefore captures the interactive behaviour of a sys-
tem. None of these efforts succeeded in capturing Weiser’s
informal definition of a program slice: particularly where
potentially non-terminating code and nondeterminism are
concerned. We have developed a new operational semantics
and a projection operator which defines the meaning of a
program slice applied to interactive and potentially non-
terminating programs. We have also developed an exten-
sion of the denotational semantics which also defines the
meaning of a program slice for all these classes of program.
This “extension” is simply the standard WSL denotational
semantics applied to an annotated program: so all the WSL
program analysis techniques developed over the last 25
years of research [2,3,4,5,6,7,8,9,10,11,12] can now be applied
to the analysis of non-terminating interactive programs.
We prove that the two different semantics are equivalent
for slicing purposes, and this gives us confidence that we
have captured the informal concept of a “program slice” for
interactive, potentially non-terminating programs.

The FermaT program transformation system is dis-
tributed under the GNU General Public License (GPL). The
FermaT Maintenance Environment is a graphical front end
to the FermaT program transformation system which is also
distributed under the GNU General Public License (GPL).
Both of these tools can be downloaded from the following
web site:

http://www.gkc.org.uk/fermat.html

The WSL source code for the example program in Sec-
tion 7.1 is included in the distribution in the project directory
fme/paper.

References

[1] M. Weiser, “Program slices: formal, psychological, and
practical investigations of an automatic program
abstraction method,” University of Michigan, Ann Arbor,
PhD Thesis, 1979.

[2] M. Ward, “Proving Program Refinements and
Transformations,” Oxford University, DPhil Thesis, 1989,
〈http://www.cse.dmu.ac.uk/∼mward/martin/thesis〉.

[3] M. Ward and K. H. Bennett, “A Practical Program
Transformation System For Reverse Engineering,”
presented at Working Conference on Reverse Engineering,
May 21–23, 1993, Baltimore MA, 1993,
doi:10.1109/WCRE.1993.287763.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 33

[4] E. J. Younger and M. Ward, “Understanding Concurrent
Programs using Program Transformations,” presented at
Proceedings of the 1993 2nd Workshop on Program
Comprehension, 8th-9th July, Capri, Italy, 1993, 〈http://
www.cse.dmu.ac.uk/∼mward/martin/papers/
cap.ps.gz〉.

[5] M. Ward, “Specifications from Source Code—Alchemists’
Dream or Practical Reality?,” presented at 4th
Reengineering Forum, September 19-21, 1994, Victoria,
Canada, Sept., 1994.

[6] M. Ward and K. H. Bennett, “Formal Methods to Aid the
Evolution of Software,” International Journal of Software
Engineering and Knowledge Engineering , 5, no. 1,
pp. 25–47, 1995, 〈http://www.cse.dmu.ac.uk/∼mward/
martin/papers/evolution-t.ps.gz〉
doi:dx.doi.org/10.1142/S0218194095000034.

[7] M. Ward, “The FermaT Assembler Re-engineering
Workbench,” presented at International Conference on
Software Maintenance (ICSM), 6th–9th November 2001,
Florence, Italy, 2001.

[8] M. Ward, “The Formal Transformation Approach to Source
Code Analysis and Manipulation,” presented at IEEE
International Workshop on Source Code Analysis and
Manipulation Florence, Italy, 10th November, Los Alamitos,
California, USA, 2001.

[9] M. Ward, “Pigs from Sausages? Reengineering from
Assembler to C via FermaT Transformations,” Science of
Computer Programming, Special Issue on Program
Transformation , 52, no. 1–3, pp. 213–255, 2004, 〈http://
www.cse.dmu.ac.uk/∼mward/martin/papers/
migration-t.ps.gz〉
doi:dx.doi.org/10.1016/j.scico.2004.03.007.

[10] M. P. Ward, H. Zedan and T. Hardcastle, “Conditioned
Semantic Slicing via Abstraction and Refinement in
FermaT,” presented at 9th European Conference on
Software Maintenance and Reengineering (CSMR)
Manchester, UK, March 21–23, 2005.

[11] M. Ward and H. Zedan, “Combining Dynamic and Static
Slicing for Analysing Assembler,” Science of Computer
Programming , 75, no. 3, pp. 134–175, Mar., 2010, 〈http://
www.cse.dmu.ac.uk/∼mward/martin/papers/
combined-slicing-t.pdf〉 doi:10.1016/j.scico.2009.11.001.

[12] , “Provably Correct Derivation of Algorithms
Using FermaT,” Formal Aspects of Computing , 26, no. 5,
pp. 993–1031, Sept., 2014, 〈http://www.cse.dmu.ac.uk/
∼mward/martin/papers/trans-prog-t.pdf〉.

[13] M. Weiser, “Program slicing,” IEEE Trans. Software Eng.,
10, no. 4, pp. 352–357, July, 1984.

[14] , “Programmers use slices when debugging,”
Comm. ACM , 25, no. 7, pp. 352–357, July, 1984.

[15] F. Tip, “A Survey of Program Slicing Techniques,” Journal of
Programming Languages,, 3, no. 3, pp. 121–189, Sept., 1995.

[16] D. W. Binkley and K. B. Gallagher, “A Survey of Program
Slicing,” Advances in Computers , 43, pp. 1–52, 1996.

[17] A. D. Lucia, “Program slicing: Methods and applications,”
presented at First IEEE International Workshop on Source
Code Analysis and Manipulation, Los Alamitos, California,
USA, 2001.

[18] D. Binkley and M. Harman, “A Survey of Empirical Results
on Program Slicing,” in Advances in Computers, vol. 62, M.
Zelkowitz, Ed. San Diego, CA: Academic Press,
pp. 105–178, 2004.

[19] J. Silva, “A Vocabulary of Program Slicing-Based
Techniques,” ACM Computing Surveys , 44, no. 3, June,
2012, Article No. 12.

[20] M. Ward and H. Zedan, “Slicing as a Program
Transformation,” Trans. Programming Lang. and Syst., 29,
no. 2, pp. 1–52, Apr., 2007, 〈http://www.cse.dmu.ac.uk/
∼mward/martin/papers/slicing-t.ps.gz〉
doi:doi.acm.org/10.1145/1216374.1216375.

[21] R. Ettinger, “Refactoring via Program Slicing and Sliding,”
Oxford University, DPhil Thesis, 2007, 〈http://progtools.
comlab.ox.ac.uk/members/rani/
sliding thesis esub101006.pdf〉.

[22] S. Danicic, “Dataflow Minimal Slicing,” London University,
PhD Thesis, 1999.

[23] D. Binkley, M. Harman and S. Danicic, “Amorphous
Program Slicing,” Journal of Systems and Software , 68, no.
1, pp. 45–64, Oct., 2003.

[24] D. Hofstadter, Gödel, Escher, Bach: An Eternal Golden
Braid. New Yory New York, Basic Books, 1979, ISBN
978-0-465-02656-2.

[25] S. Horwitz, T. Reps and D. Binkley, “Interprocedural slicing
using dependence graphs,” Trans. Programming Lang. and
Syst., 12, no. 1, pp. 26–60, Jan., 1990.

[26] D. Binkley, “Precise Executable Interprocedural Slices,”
ACM Letters on Programming Languages and Systems , 2,
pp. 31–45, Mar., 1993.

[27] J. Hatcliff, M. B. Dwyer and H. Zheng, “Slicing Software for
Model Construction,” Journal of Higher-order and Symbolic
Computation , 13, no. 4, pp. 315–353, Dec., 2000.

[28] B. Korel, I. Singh, L. Tahat and B. Vaysburg, “Slicing of State
Based Models. ,” presented at IEEE International
Conference on Software Maintenance (ICSM’03), Los
Alamitos, California, USA, Sept., 2003.

[29] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer and J.
Hatcliff, “A New Foundation For Control-Dependence and
Slicing for Modern Program Structures,” Proceedings of the
European Symposium On Programming (ESOP’05),
Edinburg, Scotland , 3444, pp. 77–93, Apr., 2005.

[30] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, M. B.
Dwyer, “A New Foundation For Control-Dependence and
Slicing for Modern Program Structures,” Trans.
Programming Lang. and Syst., 29, no. 5, pp. 27:1–27:43 and
N. definitionsforcontrol dependence, Aug., 2007.

[31] R. Halder and A. Cortei, “Abstract program slicing on
dependence condition graphs,” Science of Computer
Programming , 78, pp. 1240–1263, 2013,
doi:10.1016/j.scico.2012.05.007.

[32] I. Mastroeni and D. Zanardini, “Data dependencies and
program slicing: from syntax to abstract semantics,”
presented at Proceedings of the 2008 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based
Program Manipulation, PEPM ’08, San Francisco,
California, USA, 2008.

THE FORMAL SEMANTICS OF PROGRAM SLICING FOR NON-TERMINATING COMPUTATIONS 34

[33] A. D. Lucia, M. Harman, R. Hierons and J. Krinke, “Unions
of Slices are not Slices,” presented at 7th European
Conference on Software Maintenance and Reengineering
Benevento, Italy March 26-28th, 2003.

[34] S. Horwitz, J. Prins and T. Reps, “Integrating
non-interfering versions of programs,” Trans. Programming
Lang. and Syst., 11, no. 3, pp. 345–387, July, 1989.

[35] G. A. Venkatesh, “The semantic approach to program
slicing.,” SIGPLAN Notices , 26, no. 6, pp. 107–119, 1991,
Proceedings of the SIGPLAN ’91 Conference on
Programming Language Design and Implementation, June
26-28.

[36] T. Reps and W. Yang, “The Semantics of Program Slicing,”
Computer Sciences Technical Report , 777, pp. 1–30, June,
1988.

[37] E. W. Dijkstra, “Guarded commands, non-determinacy and
formal derivation of programs,” Comm. ACM , 18, no. 8,
pp. 453–457, 1975, EWD 472.

[38] , A Discipline of Programming. Englewood
Cliffs, NJ, Prentice-Hall, 1976.

[39] R. Cartwright and M. Felleisen, “The Semantics of Program
Dependence,” Proceedings of the ACM Sigplan Conference
on Programming Language Design and Implementation , 24,
no. 7, pp. 13–27, 1989, Publishes as SIGPLAN Notices.

[40] R. Giacobazzi and I. Mastroeni, “Non-Standard Semantics
for Program Slicing,” Higher-Order and Symbolic
Computation , 16, no. 4, pp. 297–339, Dec., 2003.

[41] H. Nestra, “Fractional Semantics,” in Proceedings of
AMAST 2006 (Lect. Notes in Comp. Sci.), vol. 4019, M.
Johnson and V. Vene, Eds. New York–Heidelberg–Berlin:
Springer-Verlag, pp. 278–292, 2006.

[42] S. Danicic, M. Harman, J. Howroyd and L. Ouarbya, “A
Non-Standard Semantics for Program Slicing and
Dependence Analysis,” Logic and Algebraic Programming,
Special Issue on Theory and Foundations of Programming
Language , 72, no. 2, pp. 123–240, 2007.

[43] M. Kamkar, “Interprocedural Dynamic Slicing with
Applications to Debugging and Testing,” Linkoping
University, S-581 83 Linkoping, Sweden, PhD Thesis, 1993.

[44] M. Harman and S. Danicic, “Amorphous Program Slicing,”
presented at 5th IEEE International Workshop on Program
Comprehesion (IWPC’97), Dearborn, Michigan, USA, May
1997.

[45] M. Harman, L. Hu, M. Munro and X. Zhang, “GUSTT: An
Amorphous Slicing System Which Combines Slicing and
Transformation,” presented at Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01),
Los Alamitos, California, USA, 2001.

[46] M. Harman, M. Munro, D. Binkley, S. Danicic, M. Aoudi
and L. Ouarbya, “Syntax-Directed Amorphous Slicing,”
Automated Software Engineering (ASE) , 11, no. 1,
pp. 27–61, 2004.

[47] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss
and B. Korel, “A Formalisation of the Relationship between
Forms of Program Slicing,” Science of Computer
Programming , 62, no. 3, pp. 228–252, 2006.

[48] M. Ward, “Properties of Slicing Definitions,” presented at
Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, Los Alamitos, California,
USA, Sept., 2009, 〈http://www.cse.dmu.ac.uk/∼mward/
martin/papers/properties-final.pdf〉
doi:10.1109/SCAM.2009.12.

[49] M. Ward, H. Zedan, M. Ladkau and S. Natelberg,
“Conditioned Semantic Slicing for Abstraction; Industrial
Experiment,” Software Practice and Experience , 38, no. 12,
pp. 1273–1304, Oct., 2008, 〈http://www.cse.dmu.ac.uk/
∼mward/martin/papers/slicing-paper-final.pdf〉
doi:doi.wiley.com/10.1002/spe.869.

[50] R. W. Barraclough, D. Binkley, S. Danicic, M. Harman, R. M.
Hierons, Á. Kiss, M. Laurence and L. Ouarbya, “A
Trajectory-Based Strict Semantics for Program Slicing,”
Theoretical Computer Science , 411, no. 11-13,
pp. 1372–1386, Mar., 2010, ISSN:0304-3975.

[51] D’enes Kőnig, Theorie der Endlichen und Unendlichen
Graphen: Kombinatorische Topologie der
Streckenkomplexe. Leipzig, Akad. Verlag, 1936.

[52] Anon, “Which Lines do not affect x?,” presented at Ceramic
Mug given to attendees of the First Source Code Analysis
and Manipulation Workshop, Florence, Italy, 10th
November, 2001.

[53] M. Ward, “Slicing the SCAM Mug: A Case Study in
Semantic Slicing,” presented at Third IEEE International
Workshop on Source Code Analysis and Manipulation
26th–27th September, Los Alamitos, California, USA, 2003.

[54] M. Ward, “Reverse Engineering from Assembler to Formal
Specifications via Program Transformations,” presented at
7th Working Conference on Reverse Engineering, 23-25th
November, Brisbane, Queensland, Australia, 2000, 〈http://
www.cse.dmu.ac.uk/∼mward/martin/papers/
wcre2000-t.pdf〉.

